Linear elastic orthotropic material model

Authors

  • Kari Kolari VTT Technical Research Centre of Finland Ltd.
  • Reijo Kouhia Tampere University

DOI:

https://doi.org/10.23998/rm.137490

Keywords:

linear elastic material model, orthotropy, invariants, strain energy, complementary strain energy, thermodynamic restrictions, monotonicity conditions for modulae of elasticity

Abstract

In this article a linear elastic constitutive model for orthotropic material is derived based on the invariant theory and expressed in a coordinate invariant form. The orthotropic symmetry group is defined by three mutually orthogonal unit vectors. For orthotropic elastic solid the strain energy or correspondingly the complementary strain energy depends on seven invariants. Thermodynamic restrictions for the material parameters and conditions for monotonicity of the modulae of elasticity are derived. Example parameter sets for balsa, Douglas fir, cortical bone of tibia and femur are given.

References

J.P. Boehler, toimittaja. Applications of Tensor Functions in Solid Mechanics. International Centre for Mechanical Sciences, Courses and Lectures, Nro 292, Applications of Tensor Functions in Solid Mechanics. Springer-Verlag, 1987.

P. Chadwick, M. Vianello, S.C. Cowin. A new proof that the number of linear elastic symmetries is eight. Journal of the Mechanics and Physics of Solids, 49(11):2471–2492, 2001. doi:https://doi.org/10.1016/S0022-5096(01)00064-3. The JeanPaul Boehler Memorial Volume.

S.C. Cowin. Continuum Mechanics of Anisotropic Materials. Springer, 2013.

S.C. Cowin, S.B. Doty. Tissue Mechanics. Springer, 2007.

S. Forte and M. Vianello. Symmetry classes for elasticity tensors. Journal of Elasticity, 43(2):81–108, 1996. doi:https://doi.org/10.1007/BF00042505.

M. Itskov. Tensor Algebra and Tensor Analysis for Engineers. With Applications to Continuum Mechanics. Springer, 4th edition, 2015.

M. Itskov, N. Aksel. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures, 41(14):3833–3848, 2004. doi:https://doi.org/10.1016/j.ijsolstr.2004.02.027.

P.O. Kettunen. Wood – Structure and Properties, vol. 29–30 sarjassa Materials Science Foundations. Trans Tech Publications Ltd, 2006.

K. Kolari, R. Kouhia. Poikittaisisotrooppinen lineaarikimmoinen materiaalimalli. Rakenteiden Mekaniikka, 55(1):14–25, 2022. doi:https://doi.org/10.23998/rm.115625.

R. Kouhia. Introduction to materials modelling. Lecture notes. Versio 22.10.2023. https://webpages.tuni.fi/rakmek/personnel/kouhia/papers/lecture_notes/mat_mod_lecture_notes.pdf

I-Shih Liu. On representations of anisotropic invariants. International Journal of Engineering Science, 20(10):1099–1109, 1982. doi:https://doi.org/10.1016/0020-

(82)90092-1.

I-Shih Liu. Continuum Mechanics. Springer, 2002.

N.S. Ottosen, M. Ristinmaa. The Mechanics of Constitutive Modeling. Elsevier, 2005.

G.F. Smith, M.M. Smith, R.S. Rivlin. Integrity bases for a symmetric tensor and a vector – The crystal classes. Archive for Rational Mechanics and Analysis, 12:93–133, 1963. doi:https://doi.org/10.1007/BF00281221.

A.J.M. Spencer. Theory of invariants. In C. Eringen, editor, Continuum Physics, volume 1 – Mathematics. Academic Press, 1971. Part III.

A.J.M. Spencer, R.S. Rivlin. Isotropic integrity bases for vectors and second-order tensors. Archive for Rational Mechanics and Analysis, 9:45–63, 1962. doi:https://doi.org/10.1007/BF00253332.

C. Truesdell and W. Noll. The Non-linear Field Theories of Mechanics. Springer, 3. edition, 2004.

J.M. Zhang. On anisotropic invariants of vectors and second order tensors. Archives of Mechanics, 43(2-3):215–238, 1991.

Downloads

Published

2023-12-29

Issue

Section

Djebar Baroudi and Jari Laukkanen In Memoriam

How to Cite

Linear elastic orthotropic material model. (2023). Journal of Structural Mechanics, 56(4), 146-160. https://doi.org/10.23998/rm.137490