https://rakenteidenmekaniikka.journal.fi/issue/feedRakenteiden Mekaniikka2025-10-27T22:59:36+02:00Jarkko Niiranenjarkko.niiranen@aalto.fiOpen Journal Systems<p>Jo vuodesta 1968 Rakenteiden Mekaniikka -lehden aiheina ovat olleet kiinteiden ja virtaavien aineiden teoreettinen, laskennallinen ja kokeellinen mekaniikka sekä näihin liittyvä matematiikka ja sovellukset. Esimerkkeinä voidaan mainita rakenteiden staattinen ja dynaaminen lujuusanalyysi, monikappaledynamiikka, virtausmekaniikka, rakenteen ja virtauksen vuorovaikutus, rakenteiden ja koneiden suunnittelu ja mitoitus, rakenteiden optimointi, rakenteiden toimivuus ääritilanteissa, älykkäät koneet ja rakenteet, värähtelymekaniikka, kontaktimekaniikka, roottoridynamiikka, murtumismekaniikka ja väsyminen, termomekaniikka, maa- ja kallioperän mekaniikka, rakenteiden materiaalitekniikka, uudet materiaalit, dynaamisten systeemien optimaalinen säätö, elementtimenetelmät ja -analyysi, biomekaniikka, mikromekaniikka, mekaniikan teolliset ja lääketieteelliset sovellutukset sekä mekaniikan ja lujuusopin opetus. Vertaisarvioitujen tieteellisten artikkelien lisäksi lehti julkaisee myös kirjallisuuskatsauksia, lyhyitä kommenttikirjoituksia lehdessä julkaistuista artikkeleista ja lyhyitä raportteja lehden aihealueisiin liittyvistä, mielenkiintoisista teknisistä menetelmistä tai ratkaisuista. Näiden kirjoitusten pituus on rajattu kuuteen sivuun.</p>https://rakenteidenmekaniikka.journal.fi/article/view/176617Alkusanat2025-10-27T22:53:16+02:00Jarkko Niiranen2025-10-27T00:00:00+02:00Copyright (c) 2025 Jarkko Niiranenhttps://rakenteidenmekaniikka.journal.fi/article/view/152475Transient thermal stress FE-analysis method development2025-05-19T20:14:43+03:00Sami KreiviJanne KemppainenTeemu KuivaniemiAntti-Jussi VuotikkaTero Frondelius<p>This research paper addresses the challenges of thermomechanically loaded components in four-stroke medium-speed engines, focusing on exhaust pipe failures due to low-cycle thermal fatigue. Wärtsilä's shift towards 100 % renewable energy has altered engine operating conditions, leading to new challenges in exhaust components subjected to fluctuating thermal conditions. The study focuses on the transient method's ability to detect phenomena during heating and cooling in stress and temperature histories, optimizing the transient analysis definitions and providing some principles for design modifications in thermal stress problems. A case study of nodular cast iron exhaust manifold is used as an example. Traditional methods using cyclic steady-state temperatures have been found insufficient, prompting the development of a more accurate transient method that uses measured temperatures during the engine's thermal cycle. The paper compares conventional steady state heat transfer analysis and two transient heat transfer analyses for defining thermal boundary conditions. The temperatures in the first transient analysis are defined accurately from the measurements, leading to more realistic results and long calculation time. The second transient analysis is improved to offer a balanced method between accurate thermal boundary definitions and shorter calculation time. The transient method reveals higher stress amplitudes in previously low-stress zones, identifying the actual critical points on the exhaust pipe.</p>2025-10-27T00:00:00+02:00Copyright (c) 2025 Sami Kreivi, Janne Kemppainen, Teemu Kuivaniemi, Antti-Jussi Vuotikka, Tero Frondeliushttps://rakenteidenmekaniikka.journal.fi/article/view/152545Phase field method for brittle fracture implemented with polygonal finite elements2025-06-07T12:05:06+03:00Timo SaksalaMahmood Jabareen Reijo Kouhia<p>The aim of this article is to model fracture propagation in brittle materials, such as rocks and concrete, with the phase field approach. The hybrid formulation of the phase field theory is adopted because it enables using an ad-hoc, or a problem specific, crack driving force, here of Mohr–Coulomb type, to correctly model brittle materials under compression or shear. Hybrid formulations are variationally inconsistent because the crack driving force is not the same as the one used in the underlying energy functional. They are, however, thermodynamically consistent, and computationally cheap since they allow to use a linear balance of momentum equation within the robust staggered scheme to solve the coupled system for the phase field and the displacement field. The phase field method is implemented with 2D polygonal finite elements based on the Wachspress interpolation functions. As numerical examples, typical test cases of notched samples under mode I and II loadings are simulated. Finally, a slope stability problem is solved as an engineering application.</p>2025-10-27T00:00:00+02:00Copyright (c) 2025 Timo Saksala, Mahmood Jabareen , Reijo Kouhiahttps://rakenteidenmekaniikka.journal.fi/article/view/149406Analysis of flow behavior of bioinks outside the 3D-printing nozzles2025-05-19T20:19:08+03:00Ashish PawarAshvin ChaudhariEero Immonen<p>The major challenge in extrusion-based bioprinting for medical application is printability, which largely depends on the flow behavior of bioinks just outside the nozzle. This flow behavior is influenced by several factors, including nozzle dimensions, bioink density, bioink viscosity, surface tension of the bioink-air interface, and the desired printing speed and structure. Accurately predicting the flow behavior of bioinks outside the nozzle in advance can reduce the costs associated with experimental testing. In this work, Volume of Fluid (VOF) method under Finite Volume method (FVM) framework is used to study the flow behavior outside a single nozzle. Computational Fluid Dynamics (CFD) simulations are conducted to analyze the behavior of bioinks outside the printing nozzles and flow behaviors are compared with literature. Initial simulations are performed using water due to its well characterized rheological and physical properties, and its widespread use as a reference medium in bioink formulations. The effect of all process parameters on the flow outside the nozzle was analyzed using water as the working fluid. By applying two non-dimensional numbers, Reynolds number and Weber number, flow demarcation regimes are established for water. Furthermore, simulations are performed for boinks to predict their printability. The model predictions for the qualitative flow behavior of bioinks at different temperatures matches well with experimental data from the literature.</p>2025-10-27T00:00:00+02:00Copyright (c) 2025 Ashish Pawar, Ashvin Chaudhari, Eero Immonenhttps://rakenteidenmekaniikka.journal.fi/article/view/152499On the derivation of constant-coefficient partial differential equations for elastic shells2025-03-04T11:43:11+02:00Mika Malinen<p>Here the problem of formulating a representative model problem of shell theory is considered. We study two ways to obtain a constant-coefficient expression for the strain energy density function of a linearly elastic shell. The first formulation has already been given in the context of the analysis of boundary layers in thin shells, while the other is introduced here. It appears that the essential difference between the formulations is that the constant-coefficient expressions for the strains given here depend on four geometric parameters instead of the two parameters of curvature needed by the earlier derivation. The source of this discrepancy is investigated and shown to be related to the properties of the metric tensors that are attainable by means of different parametrizations of a given surface.</p>2025-10-27T00:00:00+02:00Copyright (c) 2025 Mika Malinen