A recursion formula for the integer power of a symmetric second-order tensor and its application to computational plasticity

Författare

  • Reijo Kouhia Tampere University
  • Timo Saksala Tampere University

DOI:

https://doi.org/10.23998/rm.137537

Nyckelord:

second order tensor, recursion formula, Cayley-Hamilton equation, Rankine failure criterion

Abstract

In this paper, a recursion formula is given for the integer power of a second-order tensor in 3D Euclidean space. It can be used in constitutive modelling for approximating failure or yield surfaces with corners, and it is  demonstrated for the case of Rankine failure criterion. Removing corners provides clear advantages in computational plasticity. We discuss the consequences of the approximation errors for failure analyses of brittle and quasi-brittle
materials.

Nedladdningar

Publicerad

2023-12-29

Nummer

Sektion

Djebar Baroudin ja Jari Laukkasen muistonumero

Referera så här

Kouhia, R., & Saksala, T. (2023). A recursion formula for the integer power of a symmetric second-order tensor and its application to computational plasticity. Rakenteiden Mekaniikka, 56(4), 127-135. https://doi.org/10.23998/rm.137537