Effects of biofouling in Baltic Sea region: Applying Chow-Liu-tree augmented Naïve Bayes-theorem for analyzing voyage data of the ship

Authors

  • Elias Altarriba South-Eastern Finland University of Applied Sciences

DOI:

https://doi.org/10.23998/rm.87314

Keywords:

COMPLETE, seafaring, biofouling, Baltic Sea, Naïve Bayes

Abstract

The objective of the COMPLETE-project is to prevent spreading of harmful and invasive alien species in Baltic Sea region. Significant proliferation has happened with ballast waters but organisms are also being transported to new areas among underwater hull structures. In addition of alien species spreading issues, biofouling increases vessel hydrodynamic resistance affecting straightforward to fuel consumption and carbon dioxide emissions. At present day, this bio-contamination is deducted by regular cleanings of immersed hull structures during summer seasons. However, selection of cleaning intervals is based on experience. Also, the effect of cleaning is often perceived by crew, but normally there are no measurement-based knowledge on its effect on voyage of unique vessel. Nowadays ship systems provides increasingly data flow that can be stored automatically. Conclusion-making from big data requires appropriate tools specially limiting effects of many system mixers. This article explores usability of Chow-Liu-tree augmented Naïve Bayes method for analyzing voyage data. The advantages of this method are computational efficiency and ability to produce reliable conclusions about causation relationships prevailing in the studied system, even if available data is quite limited.

References

V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.). Global Warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, 2018.

H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer. Summary for poli-cymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC, 2019.

L. Laakso, S. Mikkonen, A. Drebs, A. Karjalainen, P. Pirinen, P. Alenius. 100 years of atmospheric and marine observations at the Finnish Utö Island in the Baltic Sea. Ocean science, 14:617–632, 2018. https://dx.doi.org/10.5194/os-14-617-2018

H. Siegel, M. Gerth. Sea surface temperature in the Baltic Sea in 2018. HELCOM Baltic Sea environment fact sheet 2019, http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/hydrography/development-of-sea-surface-temperature-in-the-baltic-sea/, 2019.

K. Kabel, M. Moros, C. Porsche, T. Neumann, F. Adolphi, T. Andersen, H. Siegel, M. Gerth, T. Leipe, E. Jansen, J.S.S. Damsté. Impact of climate change on the Baltic Sea ecosystem over the past 1000 years. Nature climate change, 2(12):871–874, 2012. https://doi.org/10.1038/nclimate1595

B.R. MacKenzie, F.W. Köster. Fish production and climate: Sprat in the Baltic Sea. Ecology, 85(3):784–794, 2004. https://dx.doi.org/10.1890/02-0780

M. Lehtiniemi, H. Ojaveer, M. David, B.S. Galil, S. Gollasch, C. McKenzie, D. Minchin, A.Occhipinti-Ambrogi, S. Olenin, J. Pederson. Dose of truth - Monitoring marine non-indigenous species to serve legislative requirements. Marine policy, 54(1):26–35, 2015. https://dx.doi.org/10.1016/j.marpol.2014.12.015

H. Ojaveer, B.S. Galil, J.T Carlton, H. Alleway, P. Goulletquer, M. Lehtiniemi, A. Marchini, W. Miller, A. Occhipinti-Ambrogi, M. Perharda, G.M Ruiz, S.L. Williams, A. Zaiko. Historical baselines in marine bioinvasions: Implications for policy and manage-ment. PLoS One, 13(8), e0202383, 2018. https://doi.org/10.1371/journal.pone.0202383

D. Oliveira. The enemy below – Adhesion and friction of ship hull fouling. Chalmers uni-versity of technology, Gothenburg, 2017.

S. Watanabe, N. Nagamatsu, K. Yokoo, Y. Kawakami. The augmentation in frictional resistance due to slime. Journal of Kansai society of naval architects, 131:45–53, 1969.

G. Loeb, D. Laster, T. Gracik. The influence of microbial fouling films on hydrodynamic drag of rotating discs. In: J.D. Costlow, R. Tipper (editors), Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, 88–94, 1984.

A. Lewkowicz, D. Das. Turbulent boundary layers on rough surfaces with and without a pliable overlayer: A simulation of marine fouling. International shipbuilding progress, 33:174–186, 1986. https://dx.doi.org/10.3233/ISP-1986-3338601

D.K. Padilla, S.L. Williams. Beyond ballast water: Aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Frontiers in ecology and the environ-ment, 2(3):131–138, 2004. https://doi.org/10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2

I.M. Gren, L. Isacs, M. Carlsson. Costs of alien invasive species in Sweden. AMBIO: A Journal of the human environment, 38(3):135–140, 2009. https://doi.org/10.1579/0044-7447-38.3.135

K.Tsiamis, A. Zenetoss, I. Deriu, E. Gervasini, A.C. Cardoso. The native distribution range of the European marine non-indigenous species. Aquatic invasions, 13(2):187–198, 2018. https://doi.org/10.3391/ai.2018.13.2.01

International maritime organization. International convention for the control and man-agement of ships’ ballast water and sediments. IMO, London, 2004.

SopS 38/2017. Alusten painolastivesien ja sedimenttien valvontaa ja käsittelyä koskeva kansainvälinen yleissopimus, 2004.

D. Minchin, S. Gollasch. Fouling and ships’ hulls: How changing circumstances and spawning events may result in the spread of exotic species. Biofouling – the journal of bioadhesion and biofilm research, 19(1):111–122, 2003. https://doi.org/10.1080/0892701021000057891

S. Gollasch, The importance of ship hull fouling as a vector of species introduction into the North Sea. Biofouling – the journal of bioadhesion and biofilm research, 18(2):105–121, 2002. https://doi.org/10.1080/08927010290011361

G.A. Hopkins, B.M. Forrest. Management options for vessel hull fouling: An overview of risks posed by in-water cleaning. ICES Journal of marine science, 65(5): 811–815, 2008. https://doi.org/10.1093/icesjms/fsn026

I.C. Davidson, L.D. McCann, M.D. Sytsma, G.M. Ruiz. Interrupting a multi-species bioinvasion vector: The efficacy of in-water cleaning for removing biofouling on obso-lete vessels. Marine pollution bulletin, 56(9):1538–1544, 2008. https://doi.org/10.1016/j.marpolbul.2008.05.024

Completing management options in the Baltic Sea Region to reduce risk of invasive species introduction by shipping. http://www.balticcomplete.com [Viitattu 6.11.2019]

J.P. Monty, E. Dogan, R. Hanson, A.J. Scardino, B. Ganapathisubramani, N. Hutchins. An assessment of the ship drag penalty arising from light calcareous tubeworm fouling. Biofouling, 32(4):451–464, 2016. https://doi.org/10.1080/08927014.2016.1148140

M.P. Schultz, J.A. Bendick, E.R. Holm, W.M. Hertel. Economic impact of biofouling on a naval surface ship. Biofouling, 27(1):87–98, 2011. https://doi.org/10.1080/08927014.2010.542809

M.P. Schultz, G. Swain. The effect of biofilms on turbulent boundary layers. Journal of fluids engineering, 121:44–51, 1999. https://doi.org/10.1115/1.2822009

P. Borenius. Viking Line Ltd., suullinen tiedonanto, 24.9.2019.

M. Rouhola. DG Divers Group oy, suullinen tiedonanto, 17.10.2019.

BIMCO. Hull fouling clause for time charter parties (updated 16 July 2015), special circu-lar no 3, 2013. https:www.bimco.org/contracts-and-clauses/bimco-clauses

International maritime organization. International convention on the control of harmful anti-fouling systems on ships. IMO, London, 2001.

International maritime organization. Guidelines for the control and management of ships' biofouling to minimize the transfer of invasive aquatic species. Resolution marine environment protection committee, 207(62), IMO, London, 2011.

M. Hilbert. Big data for development: A review of promises and challenges. Development policy review, 34(1):135–174, 2016. https://doi.org/10.1111/dpr.12142

M. Hilbert, P. López. The world’s technological capacity to store, communicate and compute information. Science, 332(6025):60–65, 2011. https://doi.org/10.1126/science.1200970

Y.K. Demirel, O. Turan, A. Incecik. Predicting the effect of biofouling on ship re-sistance using CFD. Applied ocean research, 62:100–118, 2017. https://doi.org/10.1016/j.apor.2016.12.003

M.P. Schultz, K.A. Flack. The rough-wall turbulent boundary layer from the hydrau-lically smooth to the fully rough regime. Journal of fluid mechanics, 580:381–405, 2007. https://doi.org/10.1017/S0022112007005502

M. Leer-Andersen, L. Larsson. An experimental/numerical approach for evaluating skin friction on full-scale ships with surface roughness. Journal of marine science and tech-nology, 8:26–36, 2003. https://doi.org/10.1007/s10773-003-0150-y

O. Turan, Y.K. Demirel, S. Day, T. Tezdogan. Experimental determination of added hydrodynamic resistance caused by marine biofouling on ships. 6th European transport research conference proceedings, 14:1649–1658, 2016

J. Woodward. Making things happen: A theory of causal explanation, Oxford University Press, 2003

J. Pearl. Miksi? Syyn ja seurauksen uusi tiede. Terra Cognita, 2018.

P. Myllymäki, H. Tirri. Bayes-verkkojen mahdollisuudet. Teknologian kehittämiskeskus, Teknologiakatsaus 58/98, 1998.

E.V. Lewis (ed.). Principles of naval architecture. Volume II: Resistance, propulsion and vibration. The society of naval architects and marine engineers, New Jersey, 1988.

E. Tupper. Introduction to naval architecture. Butterworth-Heinemann, Oxford, 1996.

A.F. Molland, S.R. Turnock, D.A. Hudson. Ship resistance and propulsion. Practical estimation of ship propulsive power. Cambridge university press, Cambridge, 2011.

A.M. Kracht. Design of bulbous bows. The transactions of the society of naval architects and marine engineers collection, 78:197–217, 1978.

M.P. Schultz. Frictional resistance of antifouling coating systems. Journal of fluids engi-neering, 126:1039–1047, 2004. https://doi.org/10.1115/1.1845552

F.R. Brady, I.L. Singer. Mechanical factors favoring release from fouling release coat-ings. Biofouling, 15(1–3):73–81, 2000. https://doi.org/10.1080/08927010009386299

T.M. Mitchell. Machine learning. McGraw-Hill, 1997.

D. Hand, H. Mannila, P. Smyth. Principles of data mining. The MIT Press, 2001.

P. Domingos, M. Pazzani. On the optimality of the simple Bayesian classifier under ze-ro-one loss. Machine learning, 29(2–3):103–130, 1997. https://doi.org/10.1023/A:1007413511361

E. Mäkinen (toim.). Tietojenkäsittelytieteellisiä tutkielmia. Tampereen yliopisto: In-formaatiotieteiden yksikön raportteja 36/2015, 2015.

A. Stuart, K. Ord. Kendall’s advanced theory of statistics: Volume 1 – distribution theory. Edward Arnold publishers, 1994.

C. K. Chow, C. N. Liu. Approximating Discrete Probability Distributions with Depend-ence Trees. IEEE transactions on information theory, IT-14(3):462–467, 1968. https://doi.org/10.1109/TIT.1968.1054142

N. Friedman, D. Geiger, M. Goldszmidt. Bayesian network classifiers. Machine learning, 29(2–3):131–163, 1997. https://doi.org/10.1023/A:1007465528199

E. Altarriba. Laivojen pohjien likaantumisen vaikutus kulkuvastukseen Itämerellä: teo-reettinen viitekehys ja empiiriset mittaukset. Rakenteiden mekaniikka, 53(3):209–238, 2020. https://doi.org/10.23998/rm.79336

C.W.B. Grigson. An accurate smooth friction line for use in performance prediction. Transactions of the royal institution of naval architects, 135:149–162, 1993.

C.W.B. Grigson, A planar friction algorithm and its use in analyzing hull resistance. Transactions of the royal institution of naval architects, 142:76–115, 2000.

S.A. Harvald. Resistance and propulsion of ships. John Wiley & Sons, New York, 1983.

H.E. Guldhammer, S.A Harvald. Ship resistance – Effect of form and principal dimen-sions. Akademisk forlag, Copenhagen, 1974.

H.O. Kristensen, M. Lützen. Prediction of resistance and propulsion power of ships. Technical university of Denmark, project no 2010-56, WP2, report no. 4, 2013.

H.O. Kristensen, H. Psaraftis. Prediction of resistance and propulsion power of Ro-Ro ships. Technical university of Denmark, project no 2014-122, WP2.3, report no. 1, 2016.

S. L. Lauritzen. The EM algorithm for graphical association models with missing data. Computational statistics & data analysis, 19:191–201, 1995. https://doi.org/10.1016/0167-9473(93)E0056-A

R. G. Cowell & A. P. Dawid. Fast retraction of evidence in a probabilistic expert system. Statistics and computing, 2:37–40, 1992. https://doi.org/10.1007/BF01890547

Downloads

Published

2020-10-22

Issue

Section

Articles

How to Cite

Effects of biofouling in Baltic Sea region: Applying Chow-Liu-tree augmented Naïve Bayes-theorem for analyzing voyage data of the ship. (2020). Journal of Structural Mechanics, 53(4), 356-389. https://doi.org/10.23998/rm.87314