Bayesian Sequential Experimental Design for Fatigue Tests
DOI:
https://doi.org/10.23998/rm.64924Keywords:
Bayesian inference, Bayesian experimental design, Non-linear continuous damage model, hierarchical modeling, Fisher InformationAbstract
A Bayesian sequential experimental design for fatigue testing was implemented on the basis on D-optimality and a non-linear continuous damage model. The design accounts for the whole range of testing levels.
References
Fatigue & Fracture of Engineering Materials & Structures, 11(1):1-17, 1988.
[2] Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review.
Statistical Science, pages 273-304, 1995.
[3] W. J. Dixon. The up-and-down method for small samples. American Statistical
Association Journal, 60(312):967-978, 1965.
[4] B Roy Frieden. Science from Fisher information: a unication. Cambridge University
Press, 2004.
[5] Tero Frondelius, Pasi Halla-aho, and Antti Mäntylä. Crankshaft development with
virtual engine modelling. In CIMAC Congress Helsinki, 2016.
[6] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data
analysis, volume 2. Chapman & Hall/CRC Boca Raton, FL, USA, 2014.
[7] Juho Könnö, Hannu Tienhaara, and Tero Frondelius. Wärtsilä digital design platform.
Rakenteiden mekaniikka, 50(3), 2017.
[8] Asko Kumpula, Joona Vaara, Anton Leppänen, and Tero Frondelius. Nodular cast
iron ONERA fatigue model fitting. Rakenteiden mekaniikka, 50(3), 2017.
[9] Anton Leppänen, Asko Kumpula, Joona Vaara, Massimo Cattarinussi, Juho Könnö,
and Tero Frondelius. Thermomechanical fatigue analysis of cylinder head. Rakentei-
den mekaniikka, 50(3), 2017.
[10] Francis G Pascual and William Q Meeker. Estimating fatigue curves with the random
fatigue-limit model. Technometrics, 41(4):277-289, 1999.
[11] Roger Rabb. Todennäköisyysteoriaan pohjautuva väsymisanalyysi. ISBN: 978-952-
286-210-5. Books on demand. pages 308-309, 2013.
[12] Kenneth J Ryan. Estimating expected information gains for experimental designs
with application to the random fatigue-limit model. Journal of Computational and
Graphical Statistics, 12(3):585-603, 2003.
[13] Stan Development Team. PyStan: the Python interface to Stan, 2016. Version
2.15.0.0.
[14] Ilkka Väisänen, Antti Mäntylä, Antti Korpela, and Tero Frondelius. Medium speed
engine crankshaft analysis. Rakenteiden mekaniikka, 50(3), 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Miikka Väntänen, Joona Vaara, Jukka Aho, Jukka Kemppainen, Tero Frondelius

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.