Modelling creep fracture and fatigue of metals

Authors

  • Petteri Kauppila Valmet Technologies Oy
  • Reijo Kouhia Tampere University of Technology http://orcid.org/0000-0002-3378-5612
  • Juha Ojanperä Valmet Technologies Oy
  • Timo Saksala Tampere University of Technology
  • Timo Sorjonen Valmet Technologies Oy

DOI:

https://doi.org/10.23998/rm.64657

Keywords:

viruminen, väsyminen, vauriomekaniikka, termodynaaminen muotoilu

Abstract

This article deals with modelling of creep fracture and fatigue of metals. A short description of the physical mechanisms of creep phenomena is given. Developed thermodynamically consistent material model is described in detail. The material parameters are calibrated for the 7CrMoVTiB10-10 steel in the temperature range 500-600 oC. The model is implemented as a user subroutine in the commercial finite element code ANSYS.

References

[1] H. Altenbach, Y. Gorash, and K. Naumenko. Steady-state creep of a pressurized
thick cylinder in both the linear and the power law ranges. Acta Mechanica, 195
(1-4):263-274, 2009. doi:10.1007/s00707-007-0546-5.
[2] J. Arndt, K. Haarmann, G. Kottmann, J. Vaillant, W. Bendick, G. Kubla, A. Arbab,
and F. Deshayes. The T23/T24 Book. Vallourec & Mannesmann Tubes, 2nd edition,
2000.
[3] M. Ashby, H. Shercli, and D. Cebon. Materials: Engineering, Science, Processing
and Design. Elsevier, 2 edition, 2010.
[4] J. Betten. Creep Mechanics. Springer-Verlag, Berlin, 2005.
[5] J.L. Chaboche. A review of some plasticity and viscoplasticity constitutive
theories. International Journal of Plasticity, 24(10):1642 - 1693, 2008.
doi:10.1016/j.ijplas.2008.03.009. Special Issue in Honor of Jean-Louis Chaboche.
[6] E.N. da Costa Andrade. On the viscous
ow in metals, and allied phenomena.
Proceedings of the Royal Society A, 84:1-12, 1910.
[7] T. Eirola, J. Hartikainen, R. Kouhia, and T. Manninen. Some observations on the
integration of inelastic constitutive models with damage. In O. Dahlblom, L. Fuchs,
K. Persson, M. Ristinmaa, G. Sandberg, and I. Svensson, editors, Proceedings of the
19th Nordic Seminar on Computational Mechanics, pages 23-32. Division of Structural
Mechanics, LTH, Lund University, 2006.
[8] M. Fremond. Non-Smooth Thermomechanics. Springer, Berlin, 2002.
[9] H.J. Frost and M.F. Ashby. Deformation-Mechanism Maps: The Plasticity and Creep
of Metals and Ceramics. Pergamon Press, 1982. ISBN 9780080293370. URL http:
//engineering/darthmouth.edu/defmech/.
[10] F. Garofalo. Fundamentals of Creep and Creep-Rupture in Metals. Macmillan series
in Materials Science. Macmillan, New York, 1965.
[11] Y. Gorash. Development of a creep-damage model for non-isothermal long-term
strength analysis of high-temperature components operating in a wide stress range.
PhD thesis, Martin-Luther-Universitat, Halle-Wittenberg, Germany, 2008.
[12] D.R. Hayhurst. Creep rupture under multiaxial states of stress. Journal of Mechanics
and Physics of Solids, 20:381-390, 1972. doi:10.1016/0022-5096(72)90015-4.
[13] D.R. Hayhurst. The use of continuum damage mechanics in creep analysis for design.
Journal of Strain Analysis, 29(3):233-241, 1994.
[14] J.A.H. Hult. Creep in Engineering Structures. Blaisdell Publishinh Company, 1966.
[15] L.M. Kachanov. On the creep fracture time. Iz. An SSSR Ofd. Techn. Nauk., (8):
26-31, 1958. (in Russian).
[16] L.M. Kachanov. Introduction to continuum damage mechanics, volume 10 of Mecha-
nics of Elastic Stability. Martinus Nijho Publishers, 1986.
[17] P. Kauppila. Laskentamenetelman kehittaminen tulistinkammioiden virumisen ja
vasymisen analysointiin. Master's thesis, Tampereen Teknillinen Yliopisto, 2016.
[18] P. Kauppila, R. Kouhia, J. Ojanpera, T. Saksala, and T. Sorjonen. A continuum
damage model for creep fracture and fatigue analysis. Structural Integrity Procedia,
2:887-894, 2016. doi:10.1016/j.prostr.2016.06.114.
[19] J.B. Kitto and S.C. Stultz. Steam: Its generation and Use. The Babcock & Wilcox
Company, 41 edition, 2005.
[20] R. Kouhia, P. Marjamaki, and J. Kivilahti. On the implicit integration of inelastic
constitutive equations. International Journal for Numerical Methods in Engineering,
62:1832-1856, 2005. doi:10.1002/nme.1252.
[21] F.R. Larson and J. Miller. A time-temperature relationship for rupture and creep
stresses. Transactions of ASME, 74:765{775, 1952.
[22] J. Larsson. Evaluation of current methods for creep analysis and impression creep
testing of power plant steels. Master's thesis, KTH Royal Institute of Technology,
Stockholm, Sweden, 2012.
[23] J. Lemaitre. A Course on Damage Mechanics. Springer-Verlag, Berlin, 1992.
[24] J. Lemaitre and J.-L. Chaboche. Mechanics of Solid Materials. Cambridge University
Press, 1990.
[25] S. Murakami. Continuum Damage Mechanics, volume 185 of Solid Mechanics and
Its Applications. Springer Netherlands, 2012.
[26] F.R.N. Nabarro and H.L. Villers. The Physics of Creep and Creep Resistant Alloys.
Taylor & Francis Ltd., 1995.
[27] K. Naumenko. Modeling of high temperature creep for structural analysis applications.
PhD thesis, Martin-Luther-Universitat, Halle-Wittenberg, Germany, 2006.
[28] F.K.G. Odqvist. Mathematical Theory of Creep and Creep Rupture. Oxford Mathematical
Monographs. Oxford University Press, London, 1966.
[29] N.S. Ottosen and M. Ristinmaa. The Mechanics of Constitutive Modeling. Elsevier,
2005.
[30] R.K. Penny and D.L. Marriott. Design for creep. McGraw-Hill, 1971.
[31] H. Riedel. Fracture at High Temperatures. MRE Materials Reserch and Engineering.
Springer-Verlag, Berlin, Heidelberg, 1987.
[32] K. Santaoja. Lecture Notes on Continuum Thermodynamics. Espoo, 2008.
[31] W. Wagner and H.-J. Kretzschmar. International Steam Tables. Springer-Verlag, 2
edition, 2008.
[34] A. Zolochevsky, A. Martynenko, and A. Kuhhorn. Structural benchmark creep and
creep damage testing for finite element analysis with material tension-compression
asymmetry and symmetry. Computers and Structures, 100-101:27-38, 2012.
doi:10.1016/j.compstruc.2012.02.021.

Downloads

Published

2017-12-14

Issue

Section

Articles

How to Cite

Modelling creep fracture and fatigue of metals. (2017). Journal of Structural Mechanics, 50(4), 420-450. https://doi.org/10.23998/rm.64657