Sensitivity analysis for simulated testing of composites: mapping via Isight and Abaqus
DOI:
https://doi.org/10.23998/rm.64885Schlagwörter:
composite, aging, Abaqus, IsightAbstract
This article reports the effects of multiple interactive material parameters of composite material on the deformation response during a simulated three-point bending and tensile testing. The test specimens for both scenarios were modelled for a finite element analysis, where the laminated material was described using nine material parameters. Isight® and Abaqus® codes were used to map interactive combinations of material parameters to study the specimen-level effects of simulated aging. The procedure was defined using Latin Hypercube Sampling. Based on our analysis, a specific combination of parameters can be traced to cause the stiffness degradation due to simulated aging. These results are highly beneficial when developing numerical methods to analyse aging behaviour of composite structures.
Literaturhinweise
Saarela, J. Vuorinen. Failure analysis of a leaching reactor made of glass-fiber
reinforced plastic. Engineering Failure Analysis, 60:117-136, 2016,
https://doi.org/10.1016/j.engfailanal.2015.11.026
[2] M. Kanerva, E. Sarlin, M. Hoikkanen, K. Rämö, O. Saarela, J. Vuorinen. Interface
modification of glass fibre-polyester composite-composite joints using peel plies.
International Journal of Adhesion and Adhesives, 59:40-52, 2015,
https://doi.org/10.1016/j.ijadhadh.2015.01.016
[3] E. Sarlin, R. Sironen, T. Pärnänen, M. Lindgren, M. Kanerva, J. Vuorinen.
The effect of matrix type on ageing of thick vinyl ester glass-fibre-reinforced
laminates. Composite Structures, 168:840-850, 2017.
https://doi.org/10.1016/j.compstruct.2017.02.086
[4] G. Carra, V. Carvelli. Ageing of pultruded glass fibre reinforced polymer
composites exposed to combined environmental agents, Composite Structures,
108:1019-1026, 2014. https://doi.org/10.1016/j.compstruct.2013.10.042
[5] D. E. Mouzakis, H. Zoga, C. Galiotis. Accelerated environmental ageing study of
polyester/glass fiber reinforced composites (GFRPCs), Composites: Part B,
39:467-475, 2008. https://doi.org/10.1016/j.compositesb.2006.10.004
[6] D. Lévêque, A. Schieffer, A. Mavel, J.-F. Maire. Analysis of how thermal aging
affects the long-term mechanical behaviour and strength of polymer-matric
composites, Composites science and technology, 65:395-401, 2005.
https://doi.org/ 10.1016/j.compscitech.2004.09.016
[7] S. Sriramula, M. K. Chryssanthopoulus. Quantification of uncertainty modelling in
stochastic analysis of FRP composites, Composites: Part A, 40:1673-1684, 2009.
https://doi.org/10.1016/j.compositesa.2009.08.020
[8] C. Jiang, X. Han, G. P. Liu. Uncertain optimization of composite laminated plates
using a nonlinear interval number programming method, Computers and
structures, 86:1696-1703, 2008. https://doi.org/10.1016/j.compstruc.2008.02.009
[9] Derakane 441-400 Epoxy Vinyl Ester Resin, Technical data sheet, Ashland, 2011
[10] Direct roving 386 for wilament winding, pultrusion and weaving, data sheet, Jushi
[11] K. Oguni, C. Y. Tan, G. Ravichandran. Failure mode transition in unidirectional
E-glass/vinylester composites under multiaxial compression, Journal of Composite
Materials, 34:2081-2097, 2000. https://doi.org/10.1177/002199800772661912
[12] ESAComp Material database, ESAComp
Downloads
Veröffentlicht
Ausgabe
Rubrik
Lizenz
Copyright (c) 2017 Jarno Jokinen, Mikko Kanerva

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International.