A metamodel-based design optimization scheme for minimizing energy consumption of unconditioned residential buildings considering passive features
DOI:
https://doi.org/10.23998/rm.146996Avainsanat:
nearly-zero energy buildings, passive design, parametric modelling, optimization, metamodelAbstrakti
The demand for appliances and equipment has risen as a result of emerging technologies and increasing economic growth. The outcome is high level of energy consumption worldwide, particularly in structure and infrastructure sectors. Among these sectors, residential construction stands out as one of the primary energy consumers for infrastructure development. Thus, to construct buildings that use net-zero or nearly-zero energy, architects and engineers must prioritise energy-efficient planning and implementation. This paper aims to develop a scheme to minimize the energy consumption of an unconditioned residential building based on design optimization of passive architectural design variables. Here, a parametric model is developed by using four passive architectural design variables: orientation, window-to-wall ratio, shading depth and shading angle, This generates a large number of options for the analysis of the building's energy consumption. A metamodel-based design optimisation strategy has been implemented for a single-family, single-storey, unconditioned residential building in Guwahati City, India, with the objective to minimize energy use. The results from the case study showed that by optimizing the above-mentioned passive design strategies, the energy consumption of the considered building is lower by 52% as compared to the reference design.
Lähdeviitteet
S. Deng, R. Wang, Y. Dai. How to evaluate performance of net zero energy building – A literature research. Energy, 71:1–16, 2014. doi:10.1016/j.energy.2014.05.007
B. Singh, S. K. Sharma, P. Syal. Net Zero Energy Building (NZEB) Design. Journal of The Institution of Engineers (India): Series A, 102(1):237–247, 2021. doi:10.1007/s40030-020-00500-1
L. Wells, B. Rismanchi, L. Aye. A review of Net Zero Energy Buildings with reflections on the Australian context. Energy and Buildings, 158:616–628, 2018. doi:10.1016/j.enbuild.2017.10.055
W. Wu, H. M. Skye. Residential net-zero energy buildings: Review and perspective. Renewable and Sustainable Energy Reviews, 142:110859, 2021. doi:10.1016/j.rser.2021.110859
I. Sartori, A. Napolitano, K. Voss. Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48:220–232, 2012. doi:10.1016/j.enbuild.2012.01.032
N. Abdou, Y. E. Mghouchi, S. Hamdaoui, N. E. Asri, M. Mouqallid. Multiobjective optimization of passive energy efficiency measures for net-zero energy building in Morocco. Building and Environment, 204:108141, 2021. doi:10.1016/j.buildenv.2021.108141
X. Su, S. Tian, X. Shao, X. Zhao. Embodied and operational energy and carbon emissions of passive building in HSCW zone in China: A case study. Energy and Buildings, 222:110090, 2020. doi:10.1016/j.enbuild.2020.110090
M. S. Tokarik, R. C. Richman. Life cycle cost optimization of passive energy efficiency improvements in a Toronto house. Energy and Buildings, 118:160–169, 2016. doi:10.1016/j.enbuild.2016.02.015
I. A. Gondal, M. Syed Athar, M. Khurram. Role of passive design and alternative energy in building energy optimization. Indoor and Built Environment, 30(2):278–289, 2021. doi:10.1177/1420326X19887486
S. Beazley, E. Heffernan, T. J. McCarthy. Enhancing energy efficiency in residential buildings through the use of BIM: The case for embedding parameters during design. Energy Procedia, 121:57–64, 2017. doi:10.1016/j.egypro.2017.07.479
Z. Alwan, A. Nawarathna, R. Ayman, M. Zhu, Y. ElGhazi. Framework for parametric assessment of operational and embodied energy impacts utilising BIM. Journal of Building Engineering, 42:102768, 2021. doi:10.1016/j.jobe.2021.102768
J. G. C. de Lima Montenegro, B. R. Zemero, A. C. D. B. de Souza, M. E. de Lima Tostes, U. H. Bezerra, et al. Building Information Modeling approach to optimize energy efficiency in educational buildings. Journal of Building Engineering, 43:102587, 2021. oi:10.1016/j.jobe.2021.102587
S. Liu, Y. T. Kwok, K. K-L. Lau, W. Ouyang, E. Ng. Effectiveness of passive design strategies in responding to future climate change for residential buildings in hot and humid Hong Kong. Energy and Buildings, 228:110469, 2020. doi:10.1016/j.enbuild.2020.110469
Hern´andez Falag´an, David and Ziaiebigdeli, Mohammadamin Parametric architecture beyond form–Klein and Price: Pioneers in computing the quality of life in housing. Architecture, 2(1):1–17, 2022. doi:10.3390/architecture2010001
J-T. Jin, J-W. Jeong. Optimization of a free-form building shape to minimize external thermal load using genetic algorithm. Energy and Buildings, 85:473–482, 2014. doi:10.1016/j.enbuild.2014.09.080
Z. Qiu, J. Wang, B. Yu, L. Liao, J. Li. Identification of passive solar design determinants in office building envelopes in hot and humid climates using data mining techniques. Building and Environment, 196:107566, 2021. doi:10.1016/j.buildenv.2020.107566
Delgado, Benjamin Manrique and Cao, Sunliang and Hasan, Ala and Sir´en, Kai. Multiobjective optimization for lifecycle cost, carbon dioxide emissions and exergy of residential heat and electricity prosumers. Energy Conversion and Management, 154:455–469, 2017. doi:10.1016/j.enconman.2017.11.037
E. Vettorazzi, A. Figueiredo, F. Rebelo, R. Vicente, E. G. Da Cunha. Optimization of the passive house concept for residential buildings in the South-Brazilian region. Energy and Buildings, 240:110871, 2021. doi:10.1016/j.enbuild.2021.110871
E. Rodriguez-Ubinas, C. Montero, M. Porteros, S. Vega, I. Navarro, M. Castillo-Cagigal, et al. Passive design strategies and performance of Net Energy Plus Houses. Energy and Buildings, 83:10–22, 2014. doi:10.1016/j.enbuild.2014.03.074
F. Harkouss, F. Fardoun, P. H. Biwole. Multi-objective optimization methodology for net zero energy buildings. Journal of Building Engineering, 16:57–71, 2018. doi:10.1016/j.jobe.2017.12.003
Z. J. Yu, J. Chen, Y. Sun, G. Zhang. A GA-based system sizing method for net-zero energy buildings considering multi-criteria performance requirements under parameter uncertainties. Energy and Buildings, 129:524–534, 2016. doi:10.1016/j.enbuild.2016.08.032
X. Sang, W. Pan, M. Kumaraswamy. Informing energy-efficient building envelope design decisions for Hong Kong. Energy Procedia, 62:123–131, 2014. doi:10.1016/j.egypro.2014.12.373
J. Chai, P. Huang, Y. Sun. Differential evolution-based system design optimization for net zero energy buildings under climate change. Sustainable Cities and Society, 55:102037, 2020. doi:10.1016/j.scs.2020.102037
R. McNeel. Rhinoceros 7: User’s Guide McNeel & Associates, 2021. Version 7 [25] P. Payne. Grasshopper: Visual Programming for Rhinoceros McNeel & Associates, 2020.
K. Reinecke, A. Hammad. Honeybee Energy Simulation Manual 2020. https://www.ladybug.tools/honeybee Accessed: 2025-01-08
G. Lippiello, K. Reinecke. Ladybug Tools Documentation 2020. https://www.ladybug.tools/ Accessed: 2025-01-08
K. Konis, A. Gamas, K. Karen Passive performance and building form: An optimization framework for early-stage design support Solar Energy, 125:161–179, 2016. doi:10.1016/j.solener.2015.12.020
R. Rezaee, R. Vakilinezhad, J. Haymaker Parametric framework for a feasibility study of zero-energy residential buildings for the design stage Journal of Building Engineering, 35:101960, 2021. doi:10.1016/j.jobe.2020.101960
E. Touloupaki, T. Theodosiou Energy performance optimization as a generative design tool for nearly zero energy buildings Procedia engineering, 180:1178–1185, 2017. doi:10.1016/j.proeng.2017.04.278
G. Roy, S. Dutta, S. Choudhury Building portfolio seismic fragility analysis: incorporating building-to-building variability to carry out seismic fragility analysis for reinforced concrete buildings in a city. Disaster Prevention and Resilience, 2:6, 2023. doi:10.20517/dpr.2023.08
A. Khani, M. Khakzand, M. Faizi Multi-objective optimization for energy consumption, visual and thermal comfort performance of educational building (case study: Qeshm Island, Iran) Sustainable Energy Technologies and Assessments, 54:102872, 2022. doi:10.1016/j.seta.2022.102872
P. Heiselberg, H. Brohus, A. Hesselholt, et al. Application of sensitivity analysis in design of sustainable buildings Renewable Energy, 34(9):2030–2036, 2009. doi:10.1016/j.renene.2009.02.016
ASHRAE Climate data for Guwahati from ASHRAE. https://www.ashrae.org/search?q=climate%20of%20Guwahati
T. O. Hodson Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not Geoscientific Model Development Discussions, 2022:1–10, 2022. doi:10.5194/gmd-15-5481-2022
T. Wilberforce, A. Olabi, E. T. Sayed, et al. A review on zero energy buildings – Pros and cons Energy and Built Environment, 4(1):25–38, 2023. doi:10.1016/j.enbenv.2021.06.002
Kele¸stemur, Oguzhan and Arıcı, Erdin¸c Analysis of some engineering properties of mortars containing steel scale using Taguchi-based grey method Journal of Building Engineering, 29:101015, 2020. doi:10.1016/j.jobe.2019.101015
Tiedostolataukset
Julkaistu
Numero
Osasto
Lisenssi
Copyright (c) 2025 Shrutismita Talukdar, Subhrajit Dutta

Tämä työ on lisensoitu Creative Commons Nimeä 4.0 Kansainvälinen Julkinen -lisenssillä.