A recursion formula for the integer power of a symmetric second-order tensor and its application to computational plasticity

Kirjoittajat

  • Reijo Kouhia Tampereen yliopisto
  • Timo Saksala Tampereen yliopisto

Avainsanat:

toisen kertaluvun tensori, rekursiokaava, Cayley-Hamilton yhälö, Rankinen murtoehto

Abstrakti

In this paper, a recursion formula is given for the integer power of a second-order tensor in 3D Euclidean space. It can be used in constitutive modelling for approximating failure or yield surfaces with corners, and it is  demonstrated for the case of Rankine failure criterion. Removing corners provides clear advantages in computational plasticity. We discuss the consequences of the approximation errors for failure analyses of brittle and quasi-brittle
materials.

Osasto
Djebar Baroudin ja Jari Laukkasen muistonumero

Julkaistu

2023-12-29

Viittaaminen

Kouhia, R., & Saksala, T. (2023). A recursion formula for the integer power of a symmetric second-order tensor and its application to computational plasticity. Rakenteiden Mekaniikka, 56(4), 127–135. https://doi.org/10.23998/rm.137537