3D simulations of deep mixed columns under road embankment

Kirjoittajat

  • Ayman Abed Chalmers University of Technology
  • Leena Korkiala-Tanttu Aalto University
  • Juha Forsman Ramboll Finland Oy
  • Kirsi Koivisto Ramboll Finland Oy

DOI:

https://doi.org/10.23998/rm.84590

Avainsanat:

soil stabilisation, finite element modelling, dynamic loading

Abstrakti

When column stabilisation is meant to function as a ground improvement under an embankment, the design cases to be considered consist of overall stability, compression resistance of the column heads, arching of the embankment on the columns and settlements. This paper focuses on the compression resistance of the columns. The proper geotechnical design of deep mixed (deep stabilised) columns under road embankment requires good estimation of the stress-strain behaviour of the columns and the surrounding soil under the embankment and traffic loading. Earlier Finnish design approaches relied on an even traffic load of 10 kN/m2 on the road surface. The dimensioning methods for column stabilised soil are also based on the idea of an even traffic load. Due to Eurocode recommendations a more realistic scenario is introduced, which remarkably increases the magnitude of the traffic loading. After deriving suitable material properties and stiffness parameters for static and dynamic traffic loading, three-dimensional finite element calculations are performed to achieve better understanding of the mechanical interaction between the embankment, columns and soil under the new loading configuration. Even though more investigations are needed before delivering a final statement, the calculations show that, for the considered case in this paper, the new loading scenario has no relevant consequences on the design compared to the earlier design approach.

Lähdeviitteet

A. Abed, L. Korkiala-Tanttu, J. Forsman. 3D Stress distribution modelling of deep mixing columns (Part II). Aalto University, Helsinki. 15 p, 2018.

A. Abed, L. Korkiala-Tanttu, J. Forsman. 3D Stress distribution modelling of deep mixing columns. Aalto University, Helsinki. 7 p, 2017.

B. Broms, P. Boman. Stabilisation of soil with lime columns. Design Handbook. 92. Royal Institute of Technology, Department of Soil and Rock Mechanics, Sweden. 92 p, 1977.

C. Chan. A laboratory investigation of shear wave velocity in stabilised soft soils. PhD Thesis. University of Sheffield. UK. 234 p, 2006.

M. Dahlström. Dry soil mixing. In: Moseley, M. & Kirsch, K (Eds.). Ground Improvement. Second Edition, Taylor & Francis. New York. pp. 435–494, 2012.

Finnish Road Administration, FINNRA. Teiden pohjarakenteiden suunnitteluperusteet “Design criteria for road base structures”, TIEH 2100002-01. Finland. In Finnish. ISBN 951-726-743-6, 60 p, 2001.

Finnish Transport Agency. Syvästabiloinnin suunnittelu “Deep stabilization planning” (in Finnish) Liikenneviraston ohjeita 17/2018. Liikennevirasto, Helsinki. ISBN 978-952-317-588-4, 128 p, 2018.

Finnish Transport Agency. Eurokoodin soveltamisohje Geotekninen suunnittelu – NCCI 7 “NCCI7 Geotechnical Design, Application guidelines for Eurocode in Finnish FTA’s guideline” 13/2017 21.4.2017 (in Finnish). Helsinki. SBN 978-952-317-387-3. 91 p, 2017.

Finnish Transport Agency. Syvästabiloinnin suunnittelu “Deep stabilization planning” (in Finnish) Liikenneviraston ohjeita 11/2010. Liikennevirasto, Helsinki. ISBN 978-952-255-030-9, 57 p, 2010.

J. Forsman, L. Korkiala-Tanttu, P. Piispanen. Mass Stabilisation as a Ground Improvement Method for Soft Peaty Soil. In: Topcuoglu, B. & Turan, M. Peat. InTechOpen. pp. 107-139, 2018. DOI: http://dx.doi.org/10.5772/intechopen.74144.

M. Hassan. Engineering characteristics of cement stabilised soft Finnish clay - a Laboratory study, Licentiate thesis, Helsinki University of Technology, Espoo, 72 p, 2009.

K. Koivisto. Katuliikenteen aiheuttaman tärinän vähentäminen syvästabiloinnin avulla “Use of Deep Stabilisation as a Countermeasure against Vehicle Generated Ground Vibration”. MSc thesis. in Finnish. Helsinki University of Technology. 120 p, 2004.

K. Koivisto, J. Hellberg, J. Forsman. "Finite Element Modelling of Deep Stabilisation Test Structures Used in Attenuating Railway Induced Ground Vibration at Koria, Finland" in M. Kitazume, M. Terashi, S. Tokunaga & N. Yasuoka (eds.) Deep Mixing 2009 Okinawa Symposium, Proceedings of The International Symposium on Deep Mixing & Admixture Stabilisation - DM'09/Okinawa, Japan/19-21 May 2009. Sanwa Co., Ltd. pp. 471-476, 2009.

K. Koivisto, J. Hellberg, J. Forsman. "LITES 2 - Eliminating traffic induced vibrations by means of deep stabilisation, phase 2. Report 1 B: Computational Analysis of the Alternative Structures", unpublished report. By Ramboll Finland Oy to Finnish Rail Administration, 2008.

P. Kolisoja. Sitomattomien kerrosten kiviainesten muodonmuutosominaisuudet: esiselvitysvaiheen kuormituskokeet “Deformation properties of aggragetes of unbound layers. Loading tests of preliminary test series”. Tielaitoksen selvityksiä 39/1993. in Finnish. Tielaitos. Helsinki. ISBN 951-47-7670-4, 71 p, 1993.

S. Köylijärvi. Saven anisotropian ja destrukturaation vaikutuksen mallintaminen Östersundomin koepenkereellä “Effect of anisotropy and destructuration on the behaviour of Östersundom test embankment”, Master's Thesis Aalto University. (in Finnish). 96 p, 2015.

F. Kulhawy, P. Mayne. Manual on estimating soil properties for foundation design. Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. 241 p, 1990.

R. Larsson, M. Mulabdic’. Shear moduli in Scandinavian clays. Shear moduli in Scandinavian clays: measurements of initial shear modulus with seismic cones: empirical correlations for the initial shear modulus in clay. Swedish Geotechnical Institute. 40. 127 p, 1991.

M. Löfman. Perniön saven parametrien luotettavuuden ja saven eri ominaisuuksien välisten korrelaatioiden arviointi “Estimation of the reliability of Perniö clay parameters and correlations between clay properties”, Master's thesis Aalto University. In Finnish. 121 p, 2016.

J. Mäenpää. Seismisen CPTU-mittauksen käyttö leikkausaallon nopeuden määrittämiseen “Determining shear wave velocity by seismic CPTU”. Master's thesis, Technical University of Tampere. In Finnish. 96 p, 2016.

M. Navin. Stability of embankments founded on soft soil improved with deep-mixing-method columns. PhD Thesis. Virginia Polytechnical Institute. 188 p, 2005.

PLAXIS 3D. Plaxis bv. Delft. The Netherlands, 2016.

H. Poulos, E. Davis. Elastic solutions for soil and rock mechanics. John Wiley & Sons. New York. 411 p, 1974.

B. Ringesten. Dry crust - its formation and geotechnical properties. PhD thesis. Chalmers University of Technology. Göteborg. Sweden. 191 p, 1990.

N. Ronkainen. Suomen maalajien ominaisuuksia Suomen Ympäristö “Characteristics of Finnish soils” 2/2012. In Finnish. ISBN 978-952-11-3975-8. 62 p, 2012.

P. Robertson. Seismic CPT (SCPT) [PowerPoint presentation]. Second International Conference on Deep Foundations (2C.F.P.B): Field Testing and Construction Aspects of Deep Foundations. Campo Ferial Fexpocruz, Santa Cruz, Bolivia, 12-15 May, 2015. Available at: http://cfpbolivia.com/2015/Robertson/Seismic-cpt(scpt)-peter-robertson.pdf (Accessed: 28 February 2019).

Swedish Road Administration (Trafikverket). Trafikverkets tekniska krav för geokonstruktioner TK Geo13 (No. TRV 2014/13914). Swedish Road Administration, Sweden. In Swedish. 105 p, 2014. Available at: http://www.th.tkgbg.se/Portals/0/STARTFLIKEN/Checklistor%20och%20mallar/2_%20Projektering%20dokument/TK%20Geo%2013%20Trafikverkets%20tekniska%20krav%20f%C3%B6r%20geokonstruktioner_2015-12.pdf (Accessed: 28 February 2019).

M. Timoney. Strength verification methods for stabilised soil-cement columns: a laboratory investigation of PORT and PIRT. PhD Thesis. National University of Ireland, Gal-way. 328 p, 2015.

J. Toikka, P. Virtala. Axle weight study 2013-2014. Research reports of the Finnish Transport Agency 67/2015. Finnish Transport Agency, Helsinki. ISBN 978-952-317-179-4, 74 p, 2015.

M. Topolnicki. In-situ soil mixing. In: M. Moseley, K. Kirsch (Eds.) Ground Improvement. Second Edition, CRC Press. 488 p, 2004.

J. Vinter. The effect of the sub-ballast layer material to the performance of ground-supported railway embankment. Master's thesis. In Finnish. Aalto University Espoo. 96 p, 2015.

U. Vogler. Numerical modelling of deep mixing with volume averaging technique. PhD Thesis. The University of Strathclyde. Strathclyde. UK. 233 p, 2008.

C. Wroth. In-situ measurements on initial stresses and deformations characteristics. Proceedings Conference in-situ Measurements of Soil Properties. Raleigh. North Carolina. Vol. 2, pp. 181–230, 1975.

Tiedostolataukset

Julkaistu

2021-01-21

Numero

Osasto

Artikkelit

Viittaaminen

3D simulations of deep mixed columns under road embankment. (2021). Rakenteiden Mekaniikka, 54(1), 1-20. https://doi.org/10.23998/rm.84590