Avoiding the high friction peak in fretting contact
DOI:
https://doi.org/10.23998/rm.76266Avainsanat:
fretting, friction, fretting fatigue, fretting wearAbstrakti
Fretting fatigue and wear may exist if two parts have small amplitude relative rubbing between the contacting surfaces. A peak in the coefficient of friction typically occurs during the first thousands of loading cycles in dry fretting contact with quenched and tempered steel. This peak is related to adhesive friction and wear causing non-Coulomb friction and high local contact stresses possibly leading to cracking. The focus of the study is the effect of different experimental methods on the frictional behavior of the fretting contact between the steel surfaces. The use of pre-corroded specimens and contact lubrication delayed and reduced the initial peak. However, a pre-added third body layer removed the peak completely.
Lähdeviitteet
Y. Berthier, L. Vincent, and M. Godet. Velocity accommodation in fretting. Wear, 125(1–2):25–38, 1988. https://doi.org/10.1016/0043-1648(88)90191-3
J. M. Dobromirski. Variables of Fretting Process: Are There 50 of Them? In M. H. Attia & R. B. Waterhouse (Eds.), Standardization of Fretting Fatigue Test Methods and Equipment, ASTM STP 1159 (pp. 60–66). Philadelphia: American Society for Testing and Materials, 1992.
L. Haviez, S. Fouvry, R. Toscano, and G. Yantio. An energy-based approach to understand the effect of fretting displacement amplitude on grease-lubricated interface. Wear, 338–339:422–429, 2015. https://doi.org/10.1016/j.wear.2015.07.015
D. A. Hills and D. Nowell. Mechanics of Fretting Fatigue. Dordrecht: Kluwer Academic Publishers, 1994.
J. Hintikka, A. Lehtovaara, and A. Mäntylä. Third Particle Ejection Effects on Wear with Quenched and Tempered Steel Fretting Contact. Tribology Transactions, 60(1):70–78, 2017. https://doi.org/10.1080/10402004.2016.1146813
J. Hintikka, J. Juoksukangas, A. Lehtovaara, T. Frondelius, and A. Mäntylä. Non-idealities in fretting contacts. Journal of Structural Mechanics, 50(3):171–174, 2017. https://doi.org/10.23998/rm.64886
J. Hintikka, A. Lehtovaara, T. Frondelius, and A. Mäntylä. Tangential traction instability in fretting contact below fully developed friction load. Journal of Structural Mechanics, 50(3):175–178, 2017. https://doi.org/10.23998/rm.65105
J. Hintikka, A. Lehtovaara, and A. Mäntylä. Fretting-induced friction and wear in large flat-on-flat contact with quenched and tempered steel. Tribology International, 92:191–202, 2015. https://doi.org/10.1016/j.triboint.2015.06.008
J. Hintikka, A. Lehtovaara, and A. Mäntylä. Normal displacements in non-Coulomb friction conditions during fretting. Tribology International, 94:633–639, 2016. https://doi.org/10.1016/j.triboint.2015.10.029
J. Juoksukangas, V. Nurmi, J. Hintikka, M. Vippola, A. Lehtovaara, A. Mäntylä, J. Vaara and T. Frondelius. Characterization of cracks formed in large flat-on-flat fretting contact. International Journal of Fatigue, 124:361–370, 2019. https://doi.org/10.1016/j.ijfatigue.2019.03.004
K. J. Kubiak, T. W. Liskiewicz, and T. G. Mathia. Surface morphology in engineering applications : Influence of roughness on sliding and wear in dry fretting. Tribology International, 44(11):1427–1432, 2011. https://doi.org/10.1016/j.triboint.2011.04.020
A. Mäntylä, J. Göös, A. Leppänen, and T. Frondelius. Large bore engine connecting rod fretting analysis. Journal of Structural Mechanics, 50(3):239–243, 2017. https://doi.org/10.23998/rm.64914
A. Mäntylä, J. Juoksukangas, J. Hintikka, T. Frondelius, and A. Lehtovaara. FEM-Based Wear Simulation for Fretting Contacts. Journal of Structural Mechanics, 53(1), 20–27, 2020. https://doi.org/10.23998/rm.76261
I. R. McColl, R. B. Waterhouse, S. J. Harris, and M. Tsujikawa. Lubricated fretting wear of a high-strength eutectoid steel rope wire. Wear, 185(1–2):203–212, 1995. https://doi.org/10.1016/0043-1648(95)06616-0
D. M. Mulvihill, M. E. Kartal, A. V. Olver, D. Nowell, and D. A. Hills. Investigation of non-Coulomb friction behaviour in reciprocating sliding. Wear, 271(5–6):802–816, 2011. https://doi.org/10.1016/j.wear.2011.03.014
V. Nurmi, J. Hintikka, J. Juoksukangas, M. Honkanen, M. Vippola, A. Lehtovaara, A. Mäntylä, J. Vaara and T. Frondelius. The formation and characterization of fretting-induced degradation layers using quenched and tempered steel. Tribology International, 131:258–267, 2018. https://doi.org/10.1016/j.triboint.2018.09.012
V. Périer, L. Dieng, L. Gaillet, C. Tessier, and S. Fouvry. Fretting-fatigue behaviour of bridge engineering cables in a solution of sodium chloride. Wear, 267(1–4):308–314, 2009. https://doi.org/10.1016/j.wear.2008.12.107
P. Zhang, X. Liu, W. Lu, W. Zhai, M. Zhou, and J. Wang. Fretting wear behavior of CuNiAl against 42CrMo4 under different lubrication conditions. Tribology International, 117:59–67, 2018. https://doi.org/10.1016/j.triboint.2017.08.013
Tiedostolataukset
Julkaistu
Numero
Osasto
Lisenssi
Copyright (c) 2020 Janne Juoksukangas, Jouko Hintikka, Arto Lehtovaara, Antti Mäntylä, Joona Vaara, Tero Frondelius

Tämä työ on lisensoitu Creative Commons Nimeä 4.0 Kansainvälinen Julkinen -lisenssillä.