A 2D mesoscale model for concrete fracture under dynamic loading

Kirjoittajat

  • Timo Saksala Tampereen yliopisto
  • Sulata Dhakal Tampereen yliopisto
  • Reijo Kouhia Tampereen yliopisto

DOI:

https://doi.org/10.23998/rm.148803

Avainsanat:

mesoscale, concrete fracture, finite element method, damage-viscoplasticity

Abstrakti

In this paper, we present a 2D mesomechanical model for describing concrete fracture behavior under dynamic loading. The aggregate-mortar mesostructure of concrete is explicitly described, while the interfacial transition zone is represented as a weak zone of finite elements around the aggregates. Concrete failure is described by a damage-viscoplasticity model based on the Drucker–Prager yield criterion and the Rankine criterion as the tensile cut-off. For the viscoplastic part of the model, the consistency approach is adopted. In the damage model, separate scalar damage variables are applied for tensile and compressive stress regimes. Uniaxial compression and tension tests are simulated as the numerical examples. The model holds some promise because it reproduces the experimental failure modes in tension and compression, and in dynamic Brazilian disc test, and predicts a realistic compressive-to-tensile strength ratio as well as the strain-rate sensitivity effect for concrete.

Lähdeviitteet

J.G.M. van Mier. Fracture processes of concrete. Boca Raton, CRC Press, 1997. https://doi.org/10.1201/b22384

H.J.G.M van Geel. Concrete behaviour in multiaxial compression: experimental research, Doctoral Dissertation, Eindhoven University of Technology, 1998. https://doi.org/10.6100/IR515170

I. Vegt. Concrete in dynamic tension: The fracture process. Doctoral Dissertation, Delft University of Technology, 2016. https://doi.org/10.4233/uuid:c351e276-e7e2-4153-98e6-bea6882cfb30

D. Yan, G. Lin. Dynamic properties of concrete in direct tension, Cement and Concrete Research, 36: 1371–1378, 2006. https://doi.org/10.1016/j.cemconcomp.2023.105150

G. Hofstetter G, G. Meschke. (Eds.), Numerical Modeling of Concrete Cracking, CISM Courses and Lectures, vol. 532, Springer, 2011. https://doi.org/10.1007/978-3-7091-0897-0

C. Zhang, K. Li, X. Hu, N. Banthia, C. Shi. A review on numerical simulation of the failure of high-performance fiber-reinforced concretes. Journal of Sustainable Cement-Based Materials, 13(6): 918–937, 2024. https://doi.org/10.1080/21650373.2024.2347594

J. Zhang J, R. Ma, Z. Pan, H. Zhou. Review of Mesoscale Geometric Models of Concrete Materials. Buildings, 13(10): 2428, 2023. https://doi.org/10.3390/buildings13102428

P.S.M. Thilakarathna, K.S. Kristombu Baduge, P. Mendis, V. Vimonsatit, H. Lee. Mesoscale modelling of concrete – A review of geometry generation, placing algorithms, constitutive relations and applications, Engineering Fracture Mechanics, 231, 106974, 2020. https://doi.org/10.1016/j.engfracmech.2020.106974

T. Saksala, K. Kolari, R. Kouhia. Modelling the effect of concrete cement composition on its strength and failure behavior. Rakenteiden Mekaniikka, 55(3): 55–65, 2022. https://doi.org/10.23998/rm.120704

P.E. Roelfstra, H. Sadouki, F.H. Wittmann, Le béton numérique. Materials and Structures, 18:327–335, 1985. https://doi.org/10.1007/BF02472402

A-S. Dequiedt, M. Coster, J-L. Chermant, D. Jeulin, Towards a model of concrete mesostructured. Cement and Concrete Composites, 23(2–3):289–297, 2001. https://doi.org/10.1016/S0958-9465(00)00057-3

A. Gangnant, J. Saliba, C. La Borderie, S. Morel. Modeling of the quasibrittle fracture of concrete at meso-scale: Effect of classes of aggregates on global and local behavior. Cement and Concrete Research, 89:35–44,2016. https://doi.org/10.1016/j.cemconres.2016.07.010

R.R. Pedersen, A. Simone, L.J. Sluys. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete. Cement and Concrete Research, 50:74–87.2013. https://doi.org/10.1016/j.cemconres.2013.03.021

T. Saksala. Numerical modelling of concrete fracture processes under dynamic loading: meso-mechanical approach based on embedded discontinuity finite elements. Engineering Fracture Mechanics, 201:282–297,2018. https://doi.org/10.1016/j.engfracmech.2018.07.019

E.N. Landis, J.E. Bolander. Explicit representation of physical processes in concrete fracture. Journal of Physics D: Applied Physics, 42:214002, 2009. https://doi.org/10.1088/0022-3727/42/21/214002

W.M. Wang, L.J. Sluys, R. De Borst. Viscoplasticity for instabilities due to strain softening and strain-rate softening. International Journal for Numerical Methods in Engineering, 40: 3839–3864, 1997. https://doi.org/10.1002/(SICI)1097-0207(19971030)40:20<3839::AID-NME245>3.0.CO;2-6

J. Lee, G.L. Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal Engineering Mechanics, 124:892–900, 1998. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)

P. Grassl, M. Jirásek. Damage-Plastic model for concrete failure. International Journal of Solids and Structures, 43:7166–7196, 2006. https://doi.org/10.1016/j.ijsolstr.2006.06.032

A. Al-Rumaithi. Aggregate 2D Packing Generator. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/85503-aggregate-2d-packing-generator, Retrieved February 14, 2024.

P. Wriggers, S.O. Moftah. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements in Analysis and Design, 42(7): 623–636, 2006. https://doi.org/10.1016/j.finel.2005.11.008

L. Zhang, X. Sun, H. Xie, J. Feng. Three-dimensional mesoscale modeling and failure mechanism of concrete with four-phase, Journal of Building Engineering, 64: 105693, 2023. https://doi.org/10.1016/j.jobe.2022.105693

R. Ulusay (Ed.), The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. Springer Cham, 2014. https://doi.org/10.1007/978-3-319-07713-0

C. Fairhurst. On the validity of the ‘Brazilian’ test for brittle materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1(4): 535–546, 1964. https://doi.org/10.1016/0148-9062(64)90060-9

A. Wessling, J. Kajberg. Dynamic Compressive and Tensile Characterisation of Igneous Rocks Using Split-Hopkinson Pressure Bar and Digital Image Correlation. Materials. 15(22):8264, 2022. https://doi.org/10.3390/ma15228264

T. Saksala. Damage-viscoplastic consistency model with a parabolic cap for rocks with brittle and ductile behavior under low-velocity impact loading, International Journal for Numerical and Analytical Methods in Geomechanics. 34:1041–1062, 2010. https://doi.org/10.1002/nag.868

F. Yang, H. Ma, L. Jing, L. Zhao, Z. Wang. Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique. Latin American Journal of Solids and Structures, 12(4), 730–746, 2015. https://doi.org/10.1590/1679-78251513

X. Jin, C. Hou, X. Fan, C. Lu, H. Yang, X Shu, Z. Wang. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs. Scientific Reports, 7: 15305, 2017. https://doi.org/10.1038/s41598-017-15700-2

Tiedostolataukset

Julkaistu

2025-03-12

Numero

Osasto

Artikkelit

Viittaaminen

A 2D mesoscale model for concrete fracture under dynamic loading. (2025). Rakenteiden Mekaniikka, 58(1), 1-15. https://doi.org/10.23998/rm.148803