Characterising the notch root radii and analyses of stress concentration factors near the dominant valleys of rough surface profiles
DOI:
https://doi.org/10.23998/rm.124815Avainsanat:
root radius, stress concentration factor, surface roughness, fatigue notch factorAbstrakti
Surface roughness is one of the key surface integrity factors affecting the strength and fatigue life of components. Stress concentrations occur due to the randomness of the surface profiles. The presence of a dominant valley, a complex geometry and interacting effects exasperate the severity of the stress concentrations. To estimate the theoretical stress concentration factor (SCF) at the valley, the notch root radius should be estimated carefully. We propose an effective method for estimating the root radius of the deepest valley using numerical derivative techniques. The surface roughness of a carefully sanded Alumec 89 block was measured using SJ-400 tester. The 1-D roughness data was used first to evaluate the root radius of the deepest valleys and then, estimate the SCF using analytical and computational methods. We used 2-D finite element (FE) models under uniaxial tension for the computational analyses. The validity of our method is based on determining the SCF using different theoretical methods and comparing the results to the FE calculations. The theoeritical estimations are made using the Neuber, Inglis and Arola-Ramulu approaches, whereas COMSOL Multiphysics is used for the FE analyses. Comparing the theoeritical methods with the FE calculations, the Arola-Ramulu approach was better, with a maximum of error. The minimum deviations can be explained by the model containing parameters such as , and which are inherent to the roughness profile of the material.
Lähdeviitteet
Y. Murakami, Metal Fatigue: Effect of small defect and non-metallic inclusion, Oxford, Elsevier Science Ltd, 2002.
Y.K. Gao et al., Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel, Material Letter, 61:466–468, 2006. https://doi.org/10.1016/j.matlet.2006.04.089.
A. Javidi et al., The effect of machining on the surface integrity and fatigue life, International Journal of Fatigue, 30:2050–2055, 2008. https://doi.org/10.1016/j.ijfatigue.2008.01.005
H. Remes, E. Korhonen, P. Lehto, J. Romanoff, A. Niemelä, P. Hiltunen, T. Kontkanen, Influence of surface integrity on the fatigue strength of high strength steels, J. Construction Steel Research, 89:21–24, 2013. https://doi.org/10.1016/j.jcsr.2013.06.003
T. Stenberg, Fatigue Properties of Cut and Welded High Strength Steels – Quality Aspect in Design and Production, Doctoral Thesis, Stockholm: KTH Eng. Sc., Sweden, 2016, pp. 31–32.
W.D. Pilkey and D.F. Pilkey, Peterson’s Stress Concentration Factors (3rd ed.), New Jersey, John Wiley & Sons, 2008, Ch. 1, pp. 3–24, Ch. 2, pp. 58–68, Ch. 4, pp. 178–308.
S. Z. Gebrehiwot, H. Remes, and A. T. Karttunen, A Stress concentration factor for interacting surface notch and subsurface hole, Rakenteiden Mekaniikka, 51:20–37, 2018. https://doi.org/10.23998/rm.70292
Y. Murakami. Theory of Elasticity and Stress Concentration, Chichester, John Wiley & Sons, 2017, Part II, Ch. 1, pp. 248–270, Ch. 4, pp. 319–332, Ch. 5, pp. 335–337.
R.E. Peterson, Stress Concentration Factors, New York, John Wiley & Sons, 1974, pp. 20–26.
S. Khakalo and J. Niiranen, Gradient-elastic stress analysis near cylindrical holes in a plane under bi-axial tension fields, International Journal of Solids and Structures, 110–111:351–366, 2017. https://doi.org/10.1016/j.ijsolstr.2016.10.025
D. Arola and C.L. Williams, Estimating the fatigue stress concentration factor of machined surfaces, International Journal of Fatigue, 24:923–928, 2002. https://doi.org/10.1016/S0142-1123(02)00012-9
M. Suraratchai, J. Limido, C. Mabru and R. Chieragatti, Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy, International Journal of Fatigue, 30:2119–2126, 2008. https://doi.org/10.1016/j.ijfatigue.2008.06.003
D. Arola and M. Ramulu, An examination of the effects from surface texture on the strength of fiber reinforced plastics, Journal of Composite Materials, 33:102–123. https://doi.org/10.1177/002199839903300201
Z. Cheng and R. Liao, Effect of surface topography on stress concentration factor, Chin. J. Mech. Eng., 28:1141–1148, 2015. https://doi.org/10.3901/CJME.2015.0424.047
Z. Cheng, R. Liao and W. Lu, Surface stress concentration factor via Fourier representation and its application for machined surfaces, International Journal of Solids and Structures, 113–114:108–117, 2017. https://doi.org/10.1016/j.ijsolstr.2017.01.023
W.D. Pilkey and D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd ed. New Jersey: John Wiley & Sons, 2008, Ch. 1, pp. 3–24, Ch. 2, pp. 58–68, Ch. 4, pp. 178–308.
D.J. Whitehouse, Handbook of Surface and Nanometrology: Surface Characterization, Bristol, IOP Publishing Ltd, 2003.
B. Bhushan, Modern Tribology Handbook: Surface Roughness Analysis and Measurement Techniques, vol. 1, Boca Raton, CRC Press, 2001.
J.F. Song and T.V. Vorburger, Surface Texture, ASM handbook, vol. 18.
P.L. Menezes, et al., Tribology for Scientists and Engineers, Fundamentals of Engineering Surfaces, New York, Springer, 2013.
A. Rudawska, 5 – Mechanical Treatment, Surface Treatment in Bonding Technology, Academic Press, 2019, pp. 87–128, ISBN 9780128170106, https://doi.org/10.1016/B978-0-12-817010-6.00005-9
A.C. Fischer-Cripps, Introduction to Contact Mechanics, 2nd ed., New South Wales, Australia, Springer Science+Business Media, 2007.
Z. Xu, Numerical Differentiation, University of Notre Dame, [Online]. Available: https://www3.nd.edu/~zxu2/acms40390F14/Lec-4.1.pdf [Accessed Sept. 20, 2022].
Z. Cheng, R. Liao, W. Lu and D. Wang, Fatigue notch factors prediction of rough specimen by the theory of critical distance, International Journal of Fatigue, 104:195–205, 2017. https://doi.org/10.1016/j.ijfatigue.2017.07.004
B. Zhao, J. Song, L. Xie et al., Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach. Sci Rep 11, 19279, 2021. https://doi.org/10.1038/s41598-021-98858-0
Zhi-Z. Hu and Shu-Z. Cao, Relationship between fatigue notch factor and strength, Engineering Fracture Mechanics, 48:127–136, 1994. https://doi.org/10.1016/0013-7944(94)90149-X
X. Hu, X. Jia, Z. Bao et al., Effect of notch geometry on the fatigue strength and critical distance of TC4 titanium alloy, J Mech Sci Technol 31:4727–4737, 2017. https://doi.org/10.1007/s12206-017-0919-1
Tiedostolataukset
Julkaistu
Numero
Osasto
Lisenssi
Copyright (c) 2023 Silas Gebrehiwot, Leonardo Espinosa-Leal, Heikki Remes, Marinus Vermunt

Tämä työ on lisensoitu Creative Commons Nimeä 4.0 Kansainvälinen Julkinen -lisenssillä.