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A simple technique for unstructured mesh generation
via adaptive finite elements

Tom Gustafsson

Summary This work describes a concise algorithm for the generation of triangular meshes with
the help of standard adaptive finite element methods. We demonstrate that a generic adaptive
finite element solver can be repurposed into a triangular mesh generator if a robust mesh smooth-
ing algorithm is applied between the mesh refinement steps. We present an implementation of
the mesh generator and demonstrate the resulting meshes via examples.
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Introduction

Many numerical methods for partial differential equations (PDE’s), such as the finite
element method (FEM) and the finite volume method (FVM), are based on splitting the
domain of the solution into primitive shapes such as triangles or tetrahedra. The collection
of the primitive shapes, i.e. the computational mesh, is used to define the discretisation,
e.g., in the FEM, the shape functions are polynomial in each mesh element, and in the
FVM, the discrete fluxes are defined over the cell edges or faces.

This article describes a simple approach for the triangulation of two-dimensional polyg-
onal domains. The process can be summarised as follows:

1. Find a constrained Delaunay triangulation (CDT) of the polygonal domain using
the corner points as input vertices and the edges as constraints.

2. Solve the Poisson equation with the given triangulation and the FEM.

3. Split the triangles with the largest error indicator using adaptive mesh refinement
techniques.

4. Apply centroidal patch tesselation (CPT) smoothing to the resulting triangulation.

5. Go to step 2.
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It is noteworthy that the steps 2, 3 and 5 correspond exactly to what is done in any
implementation of the standard adaptive FEM; cf. Verfürth [21] who calls it the adaptive
process.

The goal of this work is to demonstrate that if the mesh smoothing algorithm of step
4 is chosen properly, the adaptive process tends to produce reasonable meshes even if the
initial mesh is of low quality. Thus, we demonstrate that the adaptive process—together
with an implementation of the CDT and a robust mesh smoothing algorithm—can act as
a simple triangular mesh generator.

Prior work

Two popular techniques for generating unstructured meshes are those based on the ad-
vancing front technique [14] or the Delaunay mesh refinement [8, 17, 19]. In addition, there
exist several less known techniques such as quadtree meshing [23], bubble packing [20], and
hybrid techniques combining some of the above [15].

Some existing techniques bear similarity to ours. For example, Bossen–Heckbert [4]
start with a CDT and improve it by relocating the nodes. Instead of randomly picking
nodes for relocation, we use a finite element error indicator that guides the refinement.
Instead of doing local modifications, we split simultaneously all triangles that have their
error indicators above a predefined threshold.

Persson–Strang [16] describe another technique based on iterative relocation of the
nodes. An initial mesh is given by a structured background mesh which is then relaxed
by interpreting the edges as a precompressed truss structure. The structure is forced
inside a given domain by expressing the boundary using signed distance functions and
interpreting the signed distance as an external load acting on the truss. In contrast to
the present approach, the geometry description is implicit, i.e. the boundary is defined as
the zero set of a user-given distance function.

We do not expect our technique to surpass the existing techniques in the quality of the
resulting meshes or in the computational efficiency. However, the algorithm can be easier
to understand for those with a background in the finite element method and, hence, it
may be a viable candidate for supplementing adaptive finite element solvers with basic
mesh generation capabilities.

Components of the mesh generator

The input to our mesh generator is a sequence of N corner points

C = (C1, C2, . . . , CN), Cj ∈ R2, j = 1, . . . , N,

that form a polygon when connected by the edges

(C1, C2), (C2, C3), . . . , (CN−1, CN), (CN , C1).

We do not allow self-intersecting polygons although the algorithm generalises to polygons
with polygonal holes. The corresponding domain is denoted by ΩC ⊂ R2.

Constrained Delaunay triangulation

A triangulation of ΩC is a collection of nonoverlapping nondegenerate triangles whose
union is exactly ΩC. Our initial triangulation T0 is a constrained Delaunay triangulation
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(CDT) of the input vertices C with the edges (C1, C2), (C2, C3), . . ., (CN−1, CN), (CN , C1)
constrained to be a part of the resulting triangulation and the triangles outside the poly-
gon removed; cf. Chew [7] for the exact definition of a CDT and an algorithm for its
construction.

An example initial triangulation of a polygon with a spiral-shaped boundary is given
in Figure 1. It is obvious that the CDT is not always a high quality computational
mesh due to the presence of arbitrarily small angles. Thus, we seek to improve the
initial triangulation by iteratively adding new triangles, and smoothing the mesh. Note
that the remaining steps do not assume the use of CDT as an initial triangulation—any
triangulation with the prescribed edges will suffice.

Figure 1: A spiral-shaped boundary approximated by linear segments and the corre-
sponding CDT with the triangles outside of the polygon removed. An example from the
documentation of the Triangle mesh generator [18].

Solving the Poisson equation

In order to decide on the placement of the new vertices and triangles, we solve the Poisson
equation1 using the FEM and evaluate the corresponding a posteriori error estimator.
The triangles that have the highest values of the error estimator are refined, i.e. split into
smaller triangles.

The problem reads: find u : ΩC → R satisfying

−∆u = 1 in ΩC, (1)
u = 0 on ∂ΩC. (2)

The finite element method is used to numerically solve the weak formulation: find u ∈ V
such that ∫

ΩC

∇u · ∇v dx =

∫
ΩC

v dx ∀v ∈ V, (3)

where w ∈ V if w|∂ΩC = 0 and
∫

ΩC
(∇w)2 dx <∞.

We denote the kth triangulation of the domain ΩC by Tk, k = 0, 1, . . ., and use the
piecewise linear polynomial space

V k
h = {v ∈ V : v|T ∈ P1(T ) ∀T ∈ Tk},

1The choice of the Poisson equation is motivated by the following heuristic observation: a quality mesh
is often synonymous with a good mesh for the finite element solution of the Poisson equation.
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where P1(T ) denotes the set of linear polynomials over T . The finite element method
corresponding to the kth iteration reads: find ukh ∈ V k

h such that∫
ΩC

∇ukh · ∇vh dx =

∫
ΩC

vh dx ∀vh ∈ V k
h . (4)

The local a posteriori error estimator reads

ηT (ukh) =

√
h2
TA

2
T +

1

2
hT

∫
∂T\∂ΩC

(J∇ukh · nK)2 ds, T ∈ Tk, (5)

where AT is the area of the triangle T and hT is the length of its longest edge, JwK|∂T\∂ΩC

denotes the jump in the values of w over ∂T \ ∂ΩC, and n is a unit normal vector to ∂T .
The error estimator ηT is evaluated for each triangle after solving (4). Finally, a triangle
T ∈ Tk is marked for refinement if

ηT > θ max
T ′∈Tk

ηT ′ , (6)

where 0 < θ < 1 is a parameter controlling the amount of elements to split during each
iteration. [21]

Red-green-blue refinement

The triangles marked for refinement by the rule (6) are split into four. In order to keep
the rest of the triangulation conformal, i.e. to not have nodes in the middle of an edge, the
neighboring triangles are split into two or three by the so-called red-green-blue (RGB)
refinement; cf. Carstensen [5]. Using RGB refinement to the example of Figure 1 is
depicted in Figure 2.

Figure 2: (Left.) The initial triangulation. (Right.) The resulting triangulation after a
solve of (4) and an adaptive RGB refinement.

Centroidal patch triangulation smoothing

We use a mesh smoothing approach introduced by Chen–Holst [6] who refer to the al-
gorithm as centroidal patch triangulation (CPT) smoothing. The idea is to repeatedly
move the interior vertices to the area-weighted averages of the barycentres of the sur-
rounding triangles. The CPT smoothing is combined with an edge flipping algorithm,
also described in Chen–Holst [6], to improve the quality of the resulting triangulation.
The mesh smoother is applied to the spiral-shaped domain example in Figure 3.
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Figure 3: (Left.) The adaptively refined triangulation. (Right.) The resulting triangula-
tion after smoothing and edge flipping.

The mesh generation algorithm

In previous sections we presented an overview of all the components of the mesh generation
algorithm. The resulting mesh generator is now summarised in Algorithm 1. The total
number of refinements M is a constant to guarantee the termination of the algorithm.
Nevertheless, in practice and in our implementation the refinement loop is terminated
when a quality criterion is satisfied, e.g., when the average minimum angle of the triangles
is above a predefined threshold. The entire mesh generation process for the spiral-shaped
domain example is given in Figure 4.

Algorithm 1 Pseudocode for the triangular mesh generator
Precondition: C is a sequence of corner points for a polygonal domain
Precondition: M is the total number of refinements

1: function Adaptmesh(C)
2: T ′0 ← CDT(C)
3: T0 ← T ′0 with triangles outside of C removed
4: for k ← 1 to M do
5: T ′k ← RGB(Tk−1, {ηT : T ∈ Tk−1})
6: Tk ← CPT(T ′k )
7: end for
8: return TN
9: end function

Implementation and example meshes

We created a prototype of the mesh generator in Python for computational experi-
ments [9]. The implementation relies heavily on the scientific Python ecosystem [22].
It includes source code from pre-existing Python packages tri [3] (CDT implementation,
ported from Python 2) and the older MIT-licensed versions of optimesh [2] (CPT smooth-
ing) and meshplex [1] (edge flipping). Moreover, it performs adaptive mesh refinement
using scikit-fem [11] and visualisation using matplotlib [13].

Some example meshes are given in Figure 5. By default, our implementation uses the
average triangle quality2 above 0.9 as a stopping criterion which can lead to individual

2Triangle quality is defined as two times the ratio of the incircle and circumcircle radii.
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Figure 4: The entire mesh generation process for the spiral-shaped domain example from
left-to-right, top-to-bottom.

74



slit triangles. This is visible especially in the last two examples that have small interior
angles on the boundary.

Figure 5: Some example meshes generated using our implementation of the proposed
algorithm. The source code for the examples is available in [10].

An example application

This example utilises a variant of Algorithm 1 with steps 2 and 3 modified to allow for the
inclusion of polygonal holes [9]. The holes are treated similarly as the sequence of corner
points C in step 2 and the triangles inside the holes are removed in step 3. We consider
the domain

Ω = {(x, y) ∈ R2 : x2 + y2 ≥ a2,−4a ≤ x ≤ 4a,−2a ≤ y ≤ 2a}

which is approximated by the triangular mesh given in Figure 6. We split the boundary
of the domain into two as ∂Ω = Γ ∪ (∂Ω \ Γ) where Γ = {(x, y) ∈ R2 : |x| = 4a}, and
consider the following linear elastic boundary value problem: find u : Ω→ R2 satisfying

divσ(u) = 0 in Ω, (7)
σ(u)n · n = g on Γ, (8)
σ(u)n · t = 0 on Γ, (9)
σ(u)n = 0 on ∂Ω \ Γ, (10)

where

σ(u) = 2µ ε(u) + λ tr ε(u)I ∈ R2×2, ε(u) =
1

2

(
∇u+∇uT

)
∈ R2×2,
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Figure 6: The original and the deformed meshes: the vertices of the original mesh are
deformed using the finite element approximation of u.

Figure 7: A comparison of the finite element approximation of the stress σ11(0, y) for
y ∈ [−2a, 2a] \ (−a, a) and the pointwise reference values from Howland [12].

and n ∈ R2 denotes the outward unit normal, t ∈ R2 is the corresponding unit tangent,
I ∈ R2×2 is the identity matrix. Additional parameters describing the problem are the
Lamé parameters which are chosen to be equal µ = λ, the radius of the hole a, and a
uniform tensile force g.

We solve the above problem using the finite element method and piecewise-quadratic
elements [21]. The rigid body motion is eliminated by constraining the bottommost node
on x = 0 to zero. The resulting deformed mesh, with the vertices of the original mesh
displaced by the finite element approximation of u, is given in Figure 6. A reference
value of the stress (σ(u(x, y))11 = σ11(x, y) at internal and external boundaries along
x = 0 is given by Howland [12] via successive approximation. The reference values are
σ11(0, 2a) = σ11(0,−2a) ≈ 0.75g and σ11(0, a) = σ11(0,−a) ≈ 4.3g. A comparison of the
finite element approximation and the reference values is given in Figure 7.
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Conclusions

We introduced an algorithm for the generation of triangular meshes for explicit polygonal
domains based on the standard adaptive finite element method and centroidal patch
triangulation smoothing. We presented a prototype implementation which demonstrates
that many of the resulting meshes are reasonable and have an average triangle quality
equal to or above 0.9.

A majority of the required components are likely to be available in an existing im-
plementation of the adaptive finite element method. Therefore, the algorithm can be a
compelling candidate for supplementing an existing adaptive finite element solver with
basic mesh generation capabilities. Technically the approach extends to three dimensions
although in practice the increase in computational effort can be significant and the quality
of the resulting tetrahedralisations has not been investigated.
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