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Introduction 

Sandwich panels which are composed of thin metal faces with mineral wool, rock wool, 

PUR, PIR, etc. cores, see Figure 1, are widely used in buildings due to their good 

thermal insulation and air tightness providing energy efficient solutions for walls and 

roofs and finally for entire buildings. 

 

 

 

 

 

 

 

 
Figure 1. Typical sandwich panels. 

In the walls the panels may be vertical or horizontal. Typical layout of the wall is 

such that one span horizontal panels are from column to column and connected to the 
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columns with long screws. In Figure 2 is shown a large boiler building where this 

technique has been used. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Boiler building, Metsä Group, Äänekoski, Finland. White and light blue walls of the 

large building are made using horizontal sandwich panels from column to column (photo: 
https://www.ruukki.com/fin/b2b/referenssit/reference-details/mets%C3%A4-group-

biotuotetehdas-%C3%A4%C3%A4nekoski) 

In Figure 3 is shown a typical detail of the horizontal wall panels which are 

connected to the columns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Detail of horizontal wall panel. Gap and insulation between panels number 312. Long 
screws which connect panels to member number 201. Not structural parts, numbers 131, 312, 

307, 320, 231, 303, 327. (more details: https://cdn.ruukki.com/docs/default-source/b2b-

documents/sandwich-panels/spa-energy-

ulkosein%c3%a4detaljit_20170504.pdf?sfvrsn=10eb8384_15) 

 

https://www.ruukki.com/fin/b2b/referenssit/reference-details/mets%C3%A4-group-biotuotetehdas-%C3%A4%C3%A4nekoski
https://www.ruukki.com/fin/b2b/referenssit/reference-details/mets%C3%A4-group-biotuotetehdas-%C3%A4%C3%A4nekoski
https://cdn.ruukki.com/docs/default-source/b2b-documents/sandwich-panels/spa-energy-ulkosein%c3%a4detaljit_20170504.pdf?sfvrsn=10eb8384_15
https://cdn.ruukki.com/docs/default-source/b2b-documents/sandwich-panels/spa-energy-ulkosein%c3%a4detaljit_20170504.pdf?sfvrsn=10eb8384_15
https://cdn.ruukki.com/docs/default-source/b2b-documents/sandwich-panels/spa-energy-ulkosein%c3%a4detaljit_20170504.pdf?sfvrsn=10eb8384_15
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The long screws (number 201 in Figure 3) connect the panels to the tubular member. 

Traditionally the tubular member is considered as a supporting structure for the panels. 

However, in the present study the panels support the tubular member. If the steel 

member is not susceptible to torsional deformations, such as rectangular hollow sections 

(RHSs) and some I-sections, then the sandwich panels restraint the member for flexural 

deformations in the plane of the wall. This restraint effect may just reduce the 

displacements and stresses of the member when the member is loaded in the plane of 

the wall, e.g. wind load of a corner column of the building. One important case is the 

buckling of the member in the plane of the wall, normally weak axis buckling. It is 

believed by the author that this stabilizing effect of sandwich panels include widely 

unused potential to cost and CO2-emission efficient buildings. 

The scope of this paper falls into the stressed skin design. Interest in the stressed 

skin design dates to the early 1950s when it was found that stresses and deflections of 

steel frames were smaller using the stressed skin design than predicted by the usual 

design calculations. The stressed skin design has gained attention especially in the 

design of single-storey industrial buildings due to possible cost savings when stabilizing 

distinct members and even the whole building.  The first book on the subject was 

published in [2] and European recommendations for the stressed skin design were 

published in [6]. Design manuals are now available in [4] and [16]. The stressed skin 

design is briefly referred in standards such as [9] and it can be considered as a well-

known technique in the structural design. In these references the stressed skin is mainly 

considered as a trapezoidal sheeting which restraints the member in the plane of the 

sheeting. The theory of Winkler foundation has been used in Ref. [16] to describe the 

local response of the trapezoidal sheeting for the loaded member. In this theory it is 

supposed that the sheeting itself is rigid and all deformations take place at the 

connections between the sheeting and the member. 

The early researches were dealt with the stressed skin design where the trapezoidal 

sheeting is used for stabilizing. Similar savings, as with the trapezoidal sheeting, may be 

achieved with sandwich panels. The shear stiffness of sandwich panels was derived and 

validated by tests in Germany in 1990’s [1] for the panels and connectors which are 

frequently used in practice, see the validity range of the theory, which is given later. The 

theory and corresponding differential equation were developed in [12] and validated by 

tests. In this theory the restraint effect of sandwich panels can be considered for the 

flexural buckling and for the lateral torsional buckling of the supported members. The 

restraint for flexural deformations of the member is in the scope of this paper. The 

torsional restraint is not considered here. 

The theory of [12] was studied extensively in a European project EASIE [5] leading 

to the design recommendations [7]. In [17] are presented the FEM simulations and the 

results were in the good agreement with the tests of [12]. In [11] are presented analytical 

solutions of flexural buckling cases and parametric studies with different properties of 

panels and members. The theory leads to the fourth order differential equations with or 

without axial force. The solutions of the differential equations can be derived based on 

classical theory of differential equations. 

The theory of [12] is based on following assumptions (the supported member is 

vertical): 
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1. The connected panel is staying in the horizontal position.  

2. Longitudinal panel joints do not restraint the longitudinal forces between panels.  

3. All deformations take place at the connections and the panel itself is supposed to 

behave as a rigid body. The shear deformations and resistances of the connectors are 

defined based on the design manual [7].  

4. Connectors at the ends of the panels form the moments, which resist the rotation 

of the member between connectors. 

5. The curvature of the member is supposed to be small between connectors. 

6. The elastic theory is supposed to be valid for panels, connectors and members. 

7. The axial force of the member is considered in the equilibrium of the member 

meaning exact P-δ analysis with small rotations. 

8. The panel and the connector are supposed to act at the axis of the member 

neglecting the eccentricity of the joint. The motivation to this assumption is based on 

that the member is not susceptible to torsional deformations. 

The assumption number 4 introduces the effects of panels to the equilibrium 

equation of the member. 

The validity range of the theory is the same as is given in [7] and [12]. The theory 

covers sandwich panels with steel or aluminium faces and a core made of polyurethane 

(PUR)-, polyisocyanurate (PIR)- and EPS-foam or made of mineral wool. The face can 

be corrugated or flat, see Figure 1. The core thicknesses of the faces should be 0.40 – 

1.00 mm. The minimum thickness of the panel is 40 mm. The supported steel member 

should not be susceptible to torsional deformations, such as rectangular hollow sections 

and some I-sections. Maximum size of the I-section given in [12] is HEB300. The core 

thickness of the supported steel member should be larger than 1.5 mm. The nominal 

diameters of the self-drilling or self-tapping screws should be 5.5 – 8.0 mm. 

When we use the exact solutions of the differential equations with the axial force of 

the member then we can follow so called P-δ analysis exactly in the elastic range. This 

kind of analysis is well established for the homogeneous elastic members without the 

stressed skin action since [19] and by many others. The exact finite element 

formulations (Note. In [3] the term “direct-stiffness method” is used instead of “exact 

FEM formulation”)  enable the use of only one „natural“ finite element per member if 

the properties of the member or the supporting structure do not change within the 

element, often within spans. This means that in the global analysis minimum amounts of 

finite elements are needed when using the natural elements and this feature is especially 

important in the optimization of structures. For the members without stressed skin 

design this kind of exact finite element formulation is presented in [18] and with shear 

deformations in [3]. Exact FEM formulations have been presented for members on 

elastic Winkler foundation in [13] and with the axial load in [8]. The exact FEM 

formulations using the solutions of the differential equations of [12] have not been 

presented in the literature before this study. 

When using the exact FEM formulation with the axial force then the corresponding 

eigenvalues can be derived using the algorithm of [20] as is done e.g. in [18]. It was 

stated in [10] that the algorithm of [20] made it possible to use the exact FEM 

formulation generally in the eigenvalue problems. 
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The scope of this paper is an analytic method for flexural stabilization of members 

by sandwich panels. The analytic method enables simple calculations in the design of 

restrained members, instead of heavier finite element calculations. The analytical exact 

results are valuable in practical engineering whenever they are available.  

The theory, which is based on these assumptions and solutions of the governing 

differential equations [12], are the basis of the analytic method, which is considered in 

this paper. Similarities and differences compared to the theory of members without 

restraints by the panels are outlined. 

The structure of this paper is as follows. In the chapter 1 are given comparisons 

between results of tests [12], FEM [17] and the analytic method aiming to demonstrate 

the usability of the analytic method in real structures. In the chapter 2 buckling of four 

Euler cases are presented and the comparisons are given with FEM. Formerly, only the 

simply supported member [12] and the cantilever [11] have been presented in the 

literature. New solutions of the corresponding differential equation enable to perform 

the exact P-δ analysis in the elastic range. In the chapter 3 the exact FEM formulation is 

given. 

 

 

Figure 4. Experimental set up [12]. 

Simply supported member 

Consider two simply supported (simply supported both against strong and weak axis 

bending) HEA120 (steel grade S275) members with spans 4.62 m. The members are 

supported with four 150 mm thick and 5 m long sandwich panels, as is shown in Figure 

4. The nominal thicknesses of faces are 0.6 mm, the width of one panel is B = 1.1 m. 

The ultimate strength of the faces is estimated as 420 MPa (measured yield strength 390 

MPa). The panels are connected to the flanges of the members by screws of 5.5 mm 

diameter at the corners of the panels with edge distance 30 mm in both directions. This 

case has been studied experimentally in [12] and by FEM in [17]. 
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The differential equation of the flexural member which is restrained by the sandwich 

panels is for a “large” axial compressive force N of the member [12] 

 

where v is the deflection of the member in y-direction in Figure 4, x is the longitudinal 

axis of the member, q is the distributed force along the member in y-direction, EI is the 

bending stiffness of the member in weak axis of the member and kv is the shear stiffness 

of one connector, generally see [7], ck is the distance of symmetric connectors at the 

ends of panels and there exist n pairs of connectors at the ends of panels. In the case of 

Figure 4 the number n = 1, B = 1100 mm and c1 = 1100 – 30 - 30 = 1040 mm. The 

slenderness λ and the “large” axial force N are defined in Eq. (2).  

 

If the axial force is “small” then 

 

where 

 

The differential equations (1) and (3) are formally same as the equations for the 

members without restraints. The transition point where the governing equation changes 

is different, and it is dependent on the axial force N as is shown in Eqs. (2) and (4). The 

difference is present, also, in the boundary conditions, and these are shown in detail in 

[11]. 

The sine function fulfills the boundary conditions of the deflections v(x) in y-

direction (weak axis bending), see Figure 4, v(0) = v(L) = 0 (L is the span of the 

member) and for the bending moments M(0) = M(L) = 0 at the supports for the simply 

supported case. Without the distributed load q and with the “large” axial load N the 

deflection is 
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where r is an integer. Substituting Eq. (5) into the differential equation (1) gives 

 

 

It can be seen in Eq. (7), that the first eigenmode r = 1 gives the smallest Ncr in this 

case. It can be seen, also, that the first part of Ncr is the same as for the member without 

sandwich panels. The buckling length Lcr in the plane of the panel can be solved from 

the Euler equation 

 

and 

 

Use the following data for the case of Figure 4: 

 

• Young’s modulus of the member: E = 210000MPa; 

• Moment of inertia HEA120, weak direction: I = Iz = 230.9 cm4; 

• Moment of inertia, strong direction: Iy = 606.2 cm4; 

• Area HEA120: A = 25.2 cm2; 

• Measured yield strength of HEA120: fy = 300 MPa; 

• Span of the member: L = 4.62 m; 

• Shear stiffness of screw: kv = 1.0 kN/mm, given in [12]; 

• Width of one panel: B = 1.1 m; 

• Distance of screws: c1 = 1040 mm. 

 

The plastic resistance of the member is Npl,Rd = 756 kN. The buckling resistances for 

weak and strong axis buckling are without sandwich panels following [9] 171 kN and 

390 kN, respectively. Eqs. (8) and (9) give the results Ncr = 716 kN and Lcr = 2586 mm 
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implying Lcr/L = 0.56 for the restrained member. The buckling load with the sandwich 

panels is close to the plastic resistance of the cross-section (Ncr/Npl,Rd = 0.95), indicating 

that the sandwich panels restraint effectively the buckling in the plane of the panels, and 

the buckling with respect to the major axis of the member (out of the plane of the 

panels) is critical. 

The tests of [12] gave the ultimate axial load 412 kN and the buckling occurred with 

respect to the major axis of the member (out of the plane of the panels). This result is 

very near by the buckling resistance of [9] 390 kN. In the tests small eccentricities of 

L/1000 were present in both directions. The FEM calculations of [17] gave the result 

419 kN. The FEM model included the same geometrical imperfections as the tests and 

measured [12] residual stresses of HEA120. The results are collected to Table 1. 

 

Table 1. Results of simply supported beam. 

Without 

panels 

Plastic resistance (kN) 756 

Buckling resistance, weak axis (kN) 171 

Buckling resistance, strong axis (kN) 390 

Weak axis buckling length (m) 4.620 

With panels Buckling load, weak axis (kN) 716 

Ultimate load, test (kN) 412 

Ultimate load, FEM (GMNIA) (kN) 419 

Weak axis buckling length (m) 2.586 

 

The shear stiffness of the screw was given in [12] and it was smaller (1 kN/mm) 

than given in the ECCS recommendations (2.8 kN/mm). The small value may be based 

on the smaller edge distance than is recommended to be used in ECCS. In the tests edge 

distances of screws with the diameter 5.5 mm was 30 mm in both directions. In the 

FEM results were detected some lateral-torsional displacements at the ultimate limit 

state [17], which were not reported in the tests [12]. Torsional restraints were not used 

in the FEM model, only the lateral restraints. 

The tests and FEM analyses indicate the same result as the analytical solution: 

sandwich panels can provide full lateral support for the member against the weak axis 

buckling in this case. Without sandwich panels the axial resistance of the member is 171 

kN (weak axis buckling). With sandwich panels, the axial resistance is 390 kN (strong 

axis buckling). It is seen that the axial resistance of the member increases significantly, 

when the sandwich panels are used for stabilizing the member in this case. 

The maximum shear force of the connector can be calculated supposing e.g. sine 

function for the deflection of the member with some maximum amplitude e0: 

 

The shear force F of the connector is related to the rotation of the member [11] 
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The maximum values are at the end of the member 

 

Using the values for kv, c, and L from the above example, and setting e0 = 15 mm = 

L/300, the maximum shear load of the connector according to Eq. (12) is Fmax = 5.3 kN.  

In Figure 5 are the FEM results of [17]. 

 

   Fmax [kN]  

 

 

 

 

 

 

 

 

v(L/2) 

[mm] 

 
Figure 5. Maximum shear force of the connector versus the out-of-plane deflection at the mid-
span of the member, FEM results [17]. SDS-R-1 and SDS-R-8 denote two end screws 

connecting sandwich panels along the right column in the analyzed structure. 

It can be seen in Figure 5, that the analytical solution (12) 5.3 kN is close to the 

results obtained by FEM. 

The axial forces of the member are plotted in Figure 6 as a function of the mid-span 

deflection in the direction of the z-axis (see Figure 4) based on FEM and tests. 
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Figure 6. Axial force versus displacement, [17]. 

 

It can be seen in Figure 6 that when the deflection reaches about 15 mm, the member 

fails. For this deflection, the maximum connector forces along the member according to 

Figure 5 are about 5 – 6 kN, which are larger than the shear resistance values given in 

[7]. In the tests of [12] no failures were reported at the connectors. Based on the FEM 

results, the connections seem to be very ductile. 

It can be concluded that the analytic method works well with respect to the buckling 

load and the connector forces, which are the most important design properties in this 

case. 

Examples of exact solutions 

Consider four Euler flexural buckling cases. The buckling forces are solved from the 

eigenvalue problems of the differential equation (1). The solutions are coming from the 

boundary conditions. When the member length is L then it is seen [11] that the boundary 

conditions for the restrained member lead to the same characteristic equations and 

corresponding lowest positive eigenvalues with the “large” compressive axial load. 

With the “small” axial load no eigenvalues are found. The characteristic equations and 

the lowest eigenvalues are: 

 

• Fixed/Free: cos(λL) = 0 => (λL)cr = π/2, 

• Hinged/Hinged: sin(λL) = 0 => (λL)cr = π, 

• Fixed/Hinged: tan(λL) = λL => (λL)cr = π/0.699, 

• Fixed/Fixed: cos(λL) = 1 => (λL)cr = 2π. 

 

From these we get the buckling loads Ncr and the buckling lengths Lcr for the restrained 

members 
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and 

 

where Lcr,0 is the buckling length without restraints. 

Consider numerical examples of Euler cases. The member is a cold-formed 

rectangular hollow section CFRHS300x200x8 (weak axis buckling, I = 5042 cm4, E = 

210000 MPa), length L = 9.3 m. The stiffness of one screw is kv = 2.8 kN/mm based on 

[7] and one pair of screws at the end of panel is employed with c1 = 1 m (n = 1) and the 

width of the panel is B = 1.2 m. The results are shown in Table 2. The results of 

discretized FEM are also shown. In the FEM analysis, see [11], the member is divided 

into 20 beam elements and the connections are modeled as horizontal springs. The 

lowest panel in FEM model is narrower (B = 0.9 m) than 7 others. 
 

Table 2. Flexural buckling loads and buckling lengths for weak axis buckling of the cold-

formed steel column CFRHS300*200*8, L = 9.3 m, panels B = 1.2 m, one pair of screws c1 = 1 

m, kv = 2.8 kN/mm. 

 Fixed/Free Hinged/Hinged Fixed/Hinged Fixed/Fixed 

Analytic Ncr,0 [kN] 302 1208 2466 4833 
FEM Ncr,0 [kN] 302 1226 2517 4711 

Analytic Lcr,0 [m] 18.60 9.30 6.51 4.65 

Analytic Ncr [kN] 1469 2375 3632 6000 
FEM Ncr [kN] 1500 2334 3715 5862 

Analytic Lcr [m] 8.44 6.63 5.36 4.17 

Lcr / Lcr,0 0.45 0.71 0.82 0.90 

Lcr / L 0.90 0.71 0.58 0.45 
Lcr,0 / L  2.00 1.00 0.70 0.50 

 

It is seen that all analytic and FEM results are near each other. The buckling load 

ratio of the cantilever (Fixed/Free in Table 2) with restraints to the buckling load 

without restraints is 1469/302 = 4.86. The corresponding ratio for the case Fixed/Fixed 

is 6000/4833 = 1.24. The ratios for other cases are between these extremes. It is seen 

that this ratio is increasing when the member is coming slenderer. In all cases the effects 

of restraints to the buckling loads and to the buckling lengths can be considered large. In 

Figure 7 are shown the buckling modes of four Euler cases using FEM. 
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Figure 7. Buckling modes of Euler cases. Color bars illustrate separate panels. 

Consider next an example of the exact P-δ analysis. The vertical cantilever of length 

L is restrained with the sandwich panels and loaded by the uniform axial load N and by 

the lateral load F at the free end. The origin of longitudinal coordinate x is at the base 

joint. The boundary conditions are: 

 

 

 

 

where M and Q are the moment and the shear force of the member. If the axial force is 

“large” then applying the boundary conditions (15) – (18) the deflection of the member 

is 
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If the axial force is “small” then 

 

The maximum displacement is at the top of the member x = L. Use the same data as 

above, i.e. CFRHS300x200x8 (weak axis bending), L = 9.3 m, B = 1.2 m, c1 = 1 m, n = 

1. By varying the stiffness kv we get the maximum displacements with respect to the 

axial forces, which are shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Maximum displacement of cantilever with respect to axial force. Positive axial load is 

compression. 

The maximum displacement is approaching infinity when the axial load is 

approaching the buckling load, which is shown in Figure 8. 

Exact FEM formulation 

Consider a finite element of the restrained member. In Figure 9 are shown generalized 

forces Fi (i = 1, …, 4), generalized displacements δi and notations. 
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Figure 9. Restrained member. 

Using the solution of the differential equation (1) 

 

in which is the homogenous solution with the particular solution v0(x) = 0, and using the 

coordinate system of Figure 9 we get 

 

which is using matrix symbols 

 

This can be solved as 

 

where 
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and 

 

Using the generalized forces Fi (i = 1, …, 4), see Figure 9 

 

The element stiffness matrix [K] is 

 

Using following notations 

 

and Berry’s functions 
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the result is 

 

The global stiffness matrix can be constructed using the substitution summing. If 

there are given only nodal forces and displacements, then the global stiffness equation 

can be constructed to get unknown nodal forces and displacements, and the support 

reactions using the normal matrix operations of FEA. 

If there exist distributed loadings along the member then the particular solution v0 

must be used. The force vector [F0] is the force vector which is calculated using the 

function v0 as the deflection of the beam and 

 

On the other hand, the equation 

 

is valid, where [δ0] is the displacement vector calculated using the function v0 as the 

displacement of the beam. So, it follows that 

 

which are the equivalent nodal forces. This is the general approach for all particular 

solutions. 

The function v0 and the vectors [δ0] and [F0] are for the uniform lateral load q as: 

 

and 
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The first equivalent nodal force is 

 

and the moments are 

 

and the result is 

 

The similar approach can be used for other load cases to get the equivalent nodal forces. 

Consider next the FEM formulation using the solution of the differential equation 

(3). 

 

The generalized displacements δi (i = 1, …, 4) are 
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which is written using matrix symbols  

 

This can be solved as 

 

where 

 

and 

 

Using the generalized forces Fi (i = 1, …, 4) 
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The element stiffness matrix is 

 

The result is 

 

Formally the stiffness matrixes are the same as those for axially loaded member 

without restraint. The differences appear in the definitions of parameters λ and in the 

definition of the shear force Q. 

As an example consider a cantilever column (CFRHS 300*200*8, E = 210000 MPa, 

I = 5042 cm4, L = 9.3 m) with the panels missing both sides at the bottom part of the 

column in the range x = 0 – 3.3 m simulating a door opening of the wall. The column is 

loaded by the axial force N at the top. At the top part of the column are panels (B = 1.2 

m, c1 = 1 m, one pair of connectors per end of the panel) at both sides of the column, see 

Figure 10. The shear stiffness of one connector is 2.1 kN/mm and the total spring 

stiffness in the analysis is kv = 4.2 kN/mm. There exist two connectors at the same level 

of the column. The flexural buckling loads in the plane of the panels (weak axis 

buckling) and the corresponding buckling lengths are calculated firstly using the exact 

FEM and then using the approximative FEM formulation with polynomials as the shape 

functions, Timoshenko’s model. 
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Figure 10. Cantilever column with door opening in sandwich panels, dimensions in mms. 

Using the exact FEM both for the lower and for the upper part of the column only 

two elements are needed to solve the problem. The exact FEM for the column without 

panels is the same as above but using the stiffness of connectors the value kv = 0. The 

global stiffness matrix is constructed using the normal substitution summing. After 

substitution summing and use of the boundary conditions, we end up to the final 4x4 

stiffness matrix [Ksys]. The final degrees of freedoms are two displacements and two 

rotations. Next, solve numerically the lowest positive Ncr from the equation det[Ksys] = 

0. The solution is Ncr = 1869.1 kN and the corresponding buckling length is Lcr = 2.365 

m. Consider next the same case using the polynomial shape functions in the FEM 

formulation. The panel is modeled as rigid, the connectors as horizontal springs and the 

free ends of panels are supported in the vertical direction. The results are shown in 

Table 3. 

 
Table 3. Convergence of approximative FEM solution. 

Number of elements using polynomial 
shape functions per 3.3 and 6.0 m 

Ncr (kN) Ratio of approximative and exact 
solution  

1 1870.4 1.0007 

2 1868.7 0.99979 

3 1868.6 0.99973 
4 1868.6 0.99973 

Exact solution 1869.1 1.00 
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It can be seen in Table 3, that in this case the convergence with polynomial shape 

functions is very fast. The exact solution Ncr in Table 3 is a little bit larger than the 

converged solution with polynomials, because in that solution the shear deformations of 

the members are considered meaning not so stiff elements than in the exact solution. 

The differences in the values are not large. 

Conclusions 

It is shown by examples that the presented analytic method is suitable for the 

approximation of the flexural displacements of the member, which is restrained by the 

sandwich panels. The basic assumptions of the method are outlined. Examples of 

buckling cases and P-δ analyses are given in order to demonstrate the method in 

practical applications. The exact FEM formulation is given for the analyses of the cases 

where the properties of the member change along its axis.  

It is believed by the author that the restraint effects of the sandwich panels include 

the unused potential in design of economic and environmental effective steel structures. 

This seems to be true in the cases, where the buckling strength of the member in the 

plane of the panels is critical, as is in the presented example of the simply supported 

member.  

In the future some cases may be analyzed in the fire cases in order to see if the 

restraint effect may stay in fire. This is possible, if the stiffness values and the 

resistances of all entities are available at elevated temperatures. 

Acknowledgements 

The financial support of European Commission and Research Programme of the 

Research Fund for Coal and Steel, project: Steel cladding systems for stabilization of 

steel buildings in fire, 751583 – STABFI – RFCS-2016, is gratefully acknowledged. 

References 

[1] R. Baehre, Th. Ladwein. Diaphragm action of sandwich panels. Journal of 

Constructional Steel Research 31, 305-316, 1994. https://doi.org/10.1016/0143-

974X(94)90015-9  

[2] E. Bryan. The stressed skin design of steel buildings. Constrado monographs. 

London: Crosby Lockwood Staples, 1973. 

[3] R. Clough, J. Penzien. Dynamics of Structures. New York, McGraw-Hill Inc, 

1974. 

[4] J. Davies, E. Bryan. Manual of Stressed Skin Diaphragms Design. Granada, 

London, 1982. 

[5] EASIE, FP7/NMP2-SE-2008, Grant agreement No 213302, 2008. 

[6] ECCS Publication No. 88: European recommendations for the application of metal 

sheeting acting as a diaphragm, 1995. 

[7] ECCS, European Recommendations on the Stabilization of Steel Structures by 

Sandwich Panels, ECCS TC7 TWG 7.9: Sandwich panels and Related structures, 

https://doi.org/10.1016/0143-974X(94)90015-9
https://doi.org/10.1016/0143-974X(94)90015-9


116 

CIB Working Commission: W056 Sandwich Panels, ECCS/CIB Joint Committee, 

2014. 

[8] M. Eisenberger, D. Yankelevsky, J. Clastornik. Stability of beams on elastic 

foundation, Computers & Structures 24, 135-139, 1986. 

https://doi.org/10.1016/0045-7949(86)90342-1 

[9] EN 1993-1-3, Eurocode 3. Design of steel structures. Part 1-3: General rules. 

Supplementary rules for cold-formed members and sheeting. 2006. 

[10] P. Friberg. Beam element matrices derived from Vlasov’s theory of open thin-

walled elastic beams. International Journal for Numerical Methods in Engineering 

21, 1205-1228, 1985. https://doi.org/10.1002/nme.1620210704 

[11] T. Hannula. Parametric review with stressed skin for stabilization. Ms thesis, 

Faculty of business and built environment, Tampere University of Technology, 

Tampere, Finland, 2018. http://urn.fi/URN:NBN:fi:tty-201811212679 

[12] E. Hedman-Pétursson. Column Buckling with Restraint from Sandwich Wall 

Elements. Department of Civil and Mining Engineering, Division of Steel 

Structures, Lulea University of Technology, 2001. urn:nbn:se:ltu:diva-18056 

[13] M. Heinisuo. Kimmoisalla alustalla olevan palkin ratkaisusta. Tampereen 

teknillinen korkeakoulu, Rakennusstatiikka, Raportti No 7, Tampere, 1984. (in 

Finnish) 

[14] M. Heinisuo. An exact finite element technique for layered beams, Computers & 

Structures, Vol 30. No. 3. 615-622, 1988. https://doi.org/10.1016/0045-

7949(88)90297-0 

[15] M. Hetenyi. Beams on elastic foundation. Ann Arbor: The University of Michigan 

Press, 1979. 

[16] T. Höglund. Stabilisation by stressed skin diaphragm action. The Swedish Institute 

of Steel Construction, Publication 174, 2002. 

[17] Z. Ma, J. Havula, M. Heinisuo. Numerical analysis of steel columns stabilized by 

sandwich panels. Rakenteiden Mekaniikka (Journal of Structural Mechanics), Vol. 

50, No 2, 97-113, 2017. https://doi.org/10.23998/rm.65309  

[18] J. Przemieniecki. Theory of Matrix Structural Analysis. New York, McGraw-Hill 

Book Company, 1968. 

[19] S. Timoshenko, J. Gere. Theory of Elastic Stability, McGraw-Hill Book, New 

York, 1961. 

[20] F. Williams, W. Wittrick. An automatic computational procedure for calculating 

natural frequencies of skeletal structures, Int. J. Mech. Sci. 12, 781-791, 1970. 

https://doi.org/10.1016/0020-7403(70)90053-6 

Markku Heinisuo  

Tampere University 

Korkeakoulunkatu 10, 33720 Tampere, Finland 

markku.heinisuo@tuni.fi 

https://doi.org/10.1016/0045-7949(86)90342-1
https://doi.org/10.1002/nme.1620210704
http://urn.fi/URN:NBN:fi:tty-201811212679
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Altu%3Adiva-18056
https://doi.org/10.1016/0045-7949(88)90297-0
https://doi.org/10.1016/0045-7949(88)90297-0
https://doi.org/10.23998/rm.65309
https://doi.org/10.1016/0020-7403(70)90053-6

