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A model for fast delamination analysis of laminated com-
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Summary Delamination is one of the major failure mechanisms for composites and tradition-
ally the simulation requires high expertise in fracture mechanics and dedicated knowledge of
the Finite Element Analysis (FEA) tool. Yet, the simulation cycle times are high. Geomet-
rically nonlinear analysis approach, which is based on the Reissner-Mindlin-Von Kármán type
shell facet model, has been implemented into the Elmer FE solver. Altair ESAComp software
runs the Elmer Solver in the background. A post-processing capability, which enables the pre-
diction of the delamination onset from the FEA output, has been implemented into the Altair
ESAComp software. A Virtual Crack Closure Technique (VCCT) specifically developed for shell
elements defining the Strain Energy Release Rate (SERR) related to the different delamination
modes at the crack front is used. The onset of delamination is predicted using the relevant
delamination criteria that utilize the SERR data and material allowables in the form of fracture
toughness. The modeling methodology is presented for laminates including initial through-the-
width delamination. Examples include delamination in the solid laminate and debonding of
the skin laminate in the sandwich structure. Rather coarse FE mesh has proved to yield good
results when compared to typical approaches that utilize the standard VCCT or Cohesive Zone
Elements.
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Introduction

Layered composite structures exhibit various failure mechanisms namely fiber failure,
matrix cracking, buckling and delamination. In this work the focus is in delamination,
which is a separation between internal layers of a composite laminate caused by high
through-the-thickness stresses, impacts or manufacturing defects. Delamination causes a
significant structural damage, particularly in compression [1, 2].

There is a clear need from industry to have easy-to-use fast delamination assessment
tools for both the initial design phase and design verification. Currently, assessment of
delamination requires high expertise and dedicated knowledge of particular Finite Element
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Figure 1. Classification of delaminations: (a) through-the-width, (b) embedded [4, 7].

Analysis (FEA) programs. The motivation of the work was to develop an approach that
brings the delamination assessment in to the hands of a typical composites engineer. Also,
the solution works as a benchmark tool to provide confidence for the users’ of the general
purpose FEA packages.

The solution to be developed shall be very responsive, i.e. modeling and computation
time shall be relatively small so that efficient what-if-studies can be performed. On the
other hand, the provided solution shall not compromise with respect to the accuracy of
the results. This kind of technology can be called “quick-and-clean”. The solution shall
be rather general so that it serves in wide range of applications and potential future
extensions shall be kept in mind.

Typical delamination shapes are circular, elliptic and peanut [3]. The simplified circu-
lar and elliptic idealized shapes of delaminations [3] were obtained by the algorithms for
finding the smallest enclosing circle and smallest enclosing ellipse. The effect of delami-
nation shape on the buckling load is presented in references [4, 5, 6].

Various types of delaminations exist like free edge, through-the-width and embedded,
see Figure 1 [4, 7]. At free edges shell elements are not capable of describing the 3D
stress state. Through-the-width delaminations appear to be the right starting point due
to the simplicity of the geometry and available reference data. In the scope of this work
embedded delaminations seem to be reasonable target that is considered as a future
extension. Virtual Crack Closure Technique VCCT [8] is the choice of this work since
it is generally applicable [9]. It is based on Linear-Elastic Fracture Mechanics (LEFM).
When predicting onset of delaminations growth material nonlinearities can be neglected,
which is desirable. For most of the Fiber-Reinforced Polymer (FRP) structures this is
applicable approach.

In the simplest form the classic application of the VCCT consists of post-processing
the finite element results of a layered structure in which an initial crack is explicitly
modeled. If the study is limited to the onset of delamination growth no special elements
or constrained equations are needed. Some approaches involve placing of stiff spring
elements at the crack front and beam results are used to determine the forces at the crack
front.

In the modeling approach, single shell elements are used at the intact regions and
two overlaid shell elements at the delaminated regions. Thus, single delamination in the
through-the-thickness direction can be modeled. Nodes of the FE model reside at the
plane of the delamination. Loads are given with respect to the geometrical mid-plane,
and then internally transformed to the reference plane.

In this work, shell facet elements are used. Stress resultants are used together with
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in-plane strains and curvatures.
The simulation is performed with a shell facet model implemented in the Altair

ESAComp software [10] The shell facet model was implemented with the Elmer open-
source Finite Element Method (FEM) solver [11, 12, 13] developed by CSC - IT Center
for Science (CSC) in collaboration with Finnish universities, research laboratories, and
industry.

ESAComp development started in 1992 at Helsinki University of Technology (now
known as Aalto University) as a project initiated by the European Space Agency (ESA).
In 2000 Componeering (currently Altair Engineering Finland), a Helsinki based company
founded by the original project team, took over the development. ESAComp is a pro-
prietary licensed software owned by Altair Engineering. ELMER technology has been
integrated in ESAComp for the realization of the FE analysis capability with an agree-
ment between Componeering and CSC.

In Elmer, Reissner-Mindlin-von Kármán type shell facet model [12, 13] is used for
geometrically nonlinear analyses.

Reissner-Mindlin-von Kármán type shell facet model

The plate bending problem is formulated for a thin or moderately thick laminated com-
posite plate which in its undeformed configuration occupies the region Ω × (−t/2, t/2),
where Ω ⊂ R2 is the midsurface and t > 0 is the laminate thickness. The kinematical
unknowns in the model are transverse deflection w, in-plane displacement u = (ux, uy),
rotation of the shell reference surface β = (βx, βy), and drilling rotation ω. The plate is
subjected to the in-plane load f = (fx, fy) and the transverse pressure g at its reference
plane.

Let us note that our model is actually a numerical ”shell facet model” since we are in
fact considering one element in the mesh. As far as we know, there is no mathematical
analysis guaranteeing the consistency of this very classical engineering approach, but it
seems to work fine in practice.

We will use standard notation of tensor calculus. Dyadic and index notation with
summation convention over repeated indices are used in parallel. Latin indices take their
values in the set {1, 2, 3} and Greek indices in the set {1, 2}.

Constitutive relation for a single layer

Let us denote by ei and ēj the cartesian basis vectors for the so called 123-coordinate
system of a single ply, and for the xyz-system of material coordinates common to all
plies, respectively. In the material coordinate system, i.e., the laminate coordinate system,
the layer system has been rotated by a positive counter clockwise angle θ about the z-
axis. Hence, we define the transformation matrix between the two coordinate systems as
T = Tij = ei · ēj, or

T =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (1)

For linear orthotropic materials, a plane stress state is assumed and the constitutive
relation for each ply has the form

σ = Q : ε (2)
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where σ = σij = σji is the second order stress tensor, ε = εij = εji is the strain tensor, and
Q = Qijkl = Qjikl = Qijlk = Qklij is the fourth order tensor of elastic stiffness coefficients.
In the laminate coordinate system the constitutive equation is written as

σ̄ = Q̄ : ε̄ (3)

where σ̄ij = TipTjqσpq is the laminate stress, ε̄ij = TipTjqεpq is the laminate strain, and
Q̄ijkl = TipTjqTkrTlsQpqrs is the tensor of stiffness coefficients in the laminate coordinate
system.

The six independent non-zero components of Q are computed using the orthotropic
material engineering constants E1, E2, ν12, ν21 = ν12E2/E1, G12, G23, and G31 [14] as

Q1111 = E1/(1− ν12ν21), Q2222 = E2/(1− ν12ν21),
Q1122 = ν12E2/(1− ν12ν21),

Q1212 = G12, Q2323 = G23, Q3131 = G31

(4)

Kinematic relations for a laminate

The kinematic relations for a laminate are considered in the xyz-coordinate system. For
notational simplicity, laminate stresses and strains in the xyz-coordinate system are in
the following denoted without bar symbol.

Using the classical kinematic assumptions of Reissner, Mindlin, and von Kármán the
laminate strain is obtained from

ε = ε(u) + ϕ(u,w)− zε(β) (5)

and
ε3α = γα(w, β), ε33 = 0 (6)

where z := x3, ε is the linear strain tensor, ϕ is the nonlinear membrane strain tensor,
and γ the transverse shear strain vector, viz.

ε(u) =
1

2
(∇u+∇uT ) (7)

ϕ(u,w) =
1

2
(∇ux ⊗∇ux +∇uy ⊗∇uy +∇w ⊗∇w) (8)

γ(w, β) = ∇w − β (9)

Let us note that the original von Kármán strains [15] do not have the quadratic in-plane
displacement gradients in the membrane tensor ϕ. The quadratic in-plane displacement
gradients are considered in the model for the sake of completness and they are not expected
to enhance the accuracy of the original model significantly.

Constitutive relations for a laminate

In plane-stress state, the laminate membrane stress resultants N (forces per unit length)
and bending moment resultants M (moments per unit length) are obtained by integration
of the stress resultants of all layers zk−1 < z < zk, k = 1, . . . , n, over the thickness of the
laminate as

N =

∫ t/2

−t/2
σdz =

∑
k

∫ zk

zk−1

σdz (10)
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M =

∫ t/2

−t/2
σzdz =

∑
k

∫ zk

zk−1

σzdz (11)

Furthermore, the resultant transvere shear forces S are obtained from

S =

∫ t/2

−t/2
σ3αdz =

∑
k

∫ zk

zk−1

σ3αdz (12)

Using the constitutive equation and the kinematic relations of Reissner, Mindlin, and
von Kármán we get the following constitutive relations for the laminate

N(u,w, β) = A : [ε(u) + ϕ(u,w)] +B : ε(β) (13)

M(u,w, β) = B : [ε(u) + ϕ(u,w)] +D : ε(β) (14)

S(w, β) = A? · γ(w, β) (15)

The tensors A, B, and D are defined according to the Classical Lamination Theory
(CLT) [14] as

A =
∑
k

∫ zk

zk−1

Q̄ dz =
∑
k

(zk − zk−1)Q̄(k) (16)

B =
∑
k

∫ zk

zk−1

Q̄z dz =
1

2

∑
k

(z2
k − z2

k−1)Q̄(k) (17)

D =
∑
k

∫ zk

zk−1

Q̄z2 dz =
1

3

∑
k

(z3
k − z3

k−1)Q̄(k) (18)

where Q̄(k) defines the constitutive relation for linear orthotropic materials in plane stress
state for layer k in the laminate coordinate system.

The tensor for transverse shear stiffness A? can be defined according to the CLT [14]
as

A?ij =
∑
k

∫ zk

zk−1

Q̄3i3j dz =
∑
k

(zk − zk−1)Q̄
(k)
3i3j (19)

In ESAComp [10], the computation of the out-of-plane shear stress distribution and stiff-
ness is based on the theory developed at German Aerospace Center (DLR) [16]. First
Order Shear Deformation Theory (FSDT), i.e., the out-of-plane shear deformation is con-
sidered as an extension to the CLT plane stress assumption in ESAComp.

The shell facet model

The functions u,w, β, ω are determined from the condition that they minimize the poten-
tial energy of the plate. The energy is defined as

Π(u,w, β, ω) =
1

2

∫
Ω

N(u,w, β) : [ε(u) + ϕ(u,w)] dΩ

+
1

2

∫
Ω

M(u,w, β) : ε(β) dΩ +
1

2

∫
Ω

S(w, β) · γ(w, β) dΩ (20)

+C

∫
Ω

[ω − rot(u)]2 dΩ−
∫

Ω

f · u dΩ−
∫

Ω

gw dΩ
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where C > 0 is a penalty parameter for imposing the condition ω = rot(u) (see [17]), and

rot(u) =
∂ux
∂y
− ∂uy

∂x
(21)

Substituting the constitutive equations in Eq. 20, we get

Π(u,w, β, ω) =
1

2

∫
Ω

ε(u) : A : ε(u) dΩ +

∫
Ω

ε(u) : B : ε(β) dΩ

+
1

2

∫
Ω

ε(β) : D : ε(β) dΩ +
1

2

∫
Ω

γ(w, β) · A? · γ(w, β) dΩ (22)

+C

∫
Ω

[ω − rot(u)]2 dΩ +
1

2

∫
Ω

ϕ(u,w) : A : ϕ(u,w) dΩ

+

∫
Ω

ε(u) : A : ϕ(u,w) dΩ +

∫
Ω

ε(β) : B : ϕ(u,w) dΩ−
∫

Ω

f · u dΩ−
∫

Ω

gw dΩ

The finite element implementation of the model has been discussed by the authors
in [13]. The elements used in this paper are either triangular or quadrilateral and use
(bi)linear basis for all field variables. The equilibrium path is computed numerically by
the arc-length method.

VCCT with plate theory

Principle of VCCT

In VCCT the Strain Energy Release Rate SERR is calculated at the delamination front.
In VCCT-based theory it is assumed that SERR is equal to the work per unit area required
to close a crack over a small distance. VCCT directly provides SERR data related to each
delamination mode. Here, VCCT plate theory is used. Unlike the standard VCCT it
provides the resultant SERR. When the plate theory is used SERR is the work required
to change the mid-plane strains ε(u) and curvatures ε(β) in the cracked part of the plate
ζ = 1, 2 at the crack front so that they are equal to the mid-plane strains and curvatures
in the uncracked part of the plate at the crack front [18].

The benefit of the VCCT plate theory is that SERR can be directly derived from shell
element results without introducing additional elements. These results cover resultant
forces N(u,w, β) and moments M(u,w, β) that are output at the element reference plane,
which is the delamination plane. Resultant forces and moments are converted to the
geometrical mid-planes of each three laminate section. Then, CLT is used to calculate
strains and curvatures at the geometrical mid-planes. Geometrically nonlinear analysis
approach is needed to determine the nonlinear relation of the load-displacement path.
However, the material is assumed to stay in the linear-elastic regime and therefore, CLT
is applicable for the determination of mid-plane strains and curvatures from the FEA
stress resultants. The goal is to determine the change in mid-plane strains and curvatures
at the different sides of the crack. Therefore, at the virgin laminate strains and curvatures
at the levels defined by the mid-planes of the cracked laminate needs to be solved. This is
obtained by assuming a constant curvature in the virgin laminate. Once the strains and
curvatures at both sides of the crack at the desired levels are known, the change can be
determined. Laminate structures are basically the same at the different sides of the crack
and knowing the change in strains and curvature leads directly to the change in forces
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and moments when using CLT. Finally, SERR is determined by multiplying changes in
resultant forces and moments by changes in strains and curvatures and summing up both
laminates. The procedure is well defined in [9, 19] and described in Figure 2.

The equation for SERR is

G =
1

2

∑
ζ

[∆N : ∆ε(u) + ∆M : ∆ε(β)]ζ (23)

Described approach defines the total SERR (see Figure 2), but it is not capable to
make distinction between the different delamination modes. Nevertheless, this is very
important piece of the general solution.

Crack tip element

In [19] a three-dimensional crack tip element is presented and used to determine SERR and
mode mix for different types of laminated plates containing delaminations. The approach
essentially contains two parts; first so-called concentrated crack tip force and moment
are determined and then, the mode I and mode II components (mode-mix) are obtained.
When determining the crack tip force and moment, strains ε22(u), ε22(β), and ε12(β)
are enforced to zero next to the crack tip and consequently, only strains ε11(u), ε12(u),
and ε11(β) are non-zero. Thus, the problem is reduced to consider only modes I and II.
In the second part the mode mix is determined using the obtained crack tip force and
moment and with an experimentally determined expression for the mode mix parameter.
The method is called CTE/NSF, where NSF stands for non-singular field. In standard
VCCT oscillatory singularity exists for modes I and II and expertise is needed to define
appropriate mesh density to obtain reliable results. The use of the nonsingular method
diminishes the element size factor and it appears that CTE/NSF is more appropriate for
general use for predicting delamination growth than any of the other methods that have
thus far been proposed.

With CTE/NSF(for detailed description refer to [19]) SERR values related to modes I
(GI) and II (GII) are solved. Similar to the VCCT plate theory the starting point is the
resultant forcesN(u,w, β) and momentsM(u,w, β) extracted from the FE solution. Using
the above assumption for enforced strains and curvatures and laminate reduced stiffness
matrix (analogy to CLT) crack tip force and moment can be solved. The mode mix
parameter is dependent on the material properties and laminate lay-ups. Once GI , GII

and G (Eq. 23) are known, GIII is solved from

GIII = G−GI −GII (24)

The method has been benchmarked with various loading and laminate configurations,
see next chapter. For mode III delamination the method gives slightly too optimistic
results, but mode III is not a governing mode for typical engineering problems.

Benchmark

Part of the software verification procedure involved setting up a benchmark model with
various laminate and loading conditions. The verification cases are shortly described,
and the results are presented. It should be noted that the actual implementation of the
ESAComp delamination module includes different structural components than the one
used in the benchmark.
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Figure 2. The procedure to determine SERR with the plate theory [9, 19]. The FE shell model for
three regions is defined so that location of the delamination is considered. The reference plane (1) is
at the level of the delamination. Associated node offsets are used. From the FEA solution results
N(u,w, β),M(u,w, β), ε(u), ε(β) are extracted at the geometrical mid-planes (2) of each section. Strains
are defined at this level (3) assuming a constant curvature. The change of mid-plane strains ∆ε(u) and
curvatures ∆ε(β) is calculated between the planes 2 and 3. The change of resultant forces and moments
∆N,∆M , respectively, is calculated with the help of of ∆ε(u) and ∆ε(β). SERR is calculated using
equation Eq. 23.
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Figure 3. Detailed view (top left) shows the difference between the reference model and ESAComp model.
The three delamination modes (bottom left). On right side and top view of the FE shell model. Side
view illustrates the thickness of the different regions.

An FE model very similar to [19] was constructed (see Figure 3). There were small
discrepancies between the reference model and the model used in this work, however. The
reference shell model was constructed using 8-noded shear deformable elements where as
in the current work 4-noded shear deformable elements were used. The reference model
contained two identical, but separate shell meshes that were 12 units away from each
other in the thickness direction. In the reference model, the shell element reference plane
was in the geometrical mid-plane of the laminate. In the uncracked region of the model,
constrained equations were used to tie displacements and rotations of the node pairs. In
the current approach, the uncracked region was modeled with single shell elements. The
reference plane of the shell element was in the plane of the crack (see Figure 3, z = 0).

The cracked regions were modeled with two separate shell meshes. Similar to the
uncracked region, the reference plane of the shell elements was in the plane of the crack.
The model was clamped from the edge where x = 0. Three different loading conditions
were used in [19]; an opening load, in-plane shearing load and an out-of-plane shearing
load. The opening load was applied using a bending moment. For the two shearing load
cases the plane of the load introduction was different in the reference work when compared
to the current approach. Therefore, correction moments were needed to obtain equivalent
load cases.

In this study, the total force or total moment applied to the edge of the cracked plane
was 1. The study involved four different laminate configurations. In all studied cases,
the location of the crack was in the same level. Studied configurations are summed up
in Figure 4 and comparative results are presented for two verification cases in Figures 5
and 6. ESAComp results are presented with red curves and those should be compared to
CTE/NSF-results.

Onset of delamination

Material properties

VCCT requires four material properties: fractures toughness in main directions and mixed
mode interaction parameter. Test methods for the definition of the fracture toughness are
illustrated in Figure 7. Mode I fracture toughness GIC is measured with Double Cantilever
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Figure 4. Verification Cases VC1 to VC9. In laminate code “d” indicates the location of the delam-
ination. Component indicates the total load per cracked side. Correction moments are not presented
for the shearing load cases. “k” stands for coefficient by which the load (Component) was multiplied
while generating the results presented in figure 5 and 6. SERR I, II and III stand for the associated
Strain Energy Release Rate components along the crack tip in the width direction for the different VCs.
Comparison of mode SERR I and mode SERR II for VC1 are shown in Figures 5 and 6, respectively.

Beam (DCB). The corresponding standard is ASTM D5528. Mode II fracture toughness
GIIC is measured with End-Notched Flexure (ENF) test as proposed by Martin [20],
which however, appears to be obsolete. There is a brand-new Mode II ASTM standard
ASTM D7905/D7905M-14 based on the 3ENF specimen (see Figure 7). The Europeans
have developed ISO 15114:2014 based on the calibrated end-loaded split specimen C-ELS.
For Mode III fracture toughness GIIIC test standard is not available. For GIIIC the value
of GIIC is proposed, which is a conservative estimate [9].

Mixed-mode interaction parameter η is obtained from a curved fit of the BK criterion
using all the results from the DCB, MMB and ENF testing. Standardized fracture me-
chanics tests are all for characterization of a 0-0 interface in a unidirectional laminate,
whereas typical aerospace skin-stiffener interface would commonly involve plies at differ-
ent angles [21]. This gives a conservative estimate for the fracture toughness in off-angle
interfaces and is generally used.

Failure criteria

A widely used criterion is B-K by Benzeggah and Kenane [2, 22]. The power-law shall be
used when the mixed-mode interaction parameter is not available (α = β = 1). Moreover,
GIIC = GIC will be usually a conservative assumption, if the value for GIIC is not available
[2]. The most recent criterion is proposed by Reeder [23, 24]

Gc = GIc+(GIIc−GIc)

(
GII +GIII

GT

)η
+(GIIIc−GIIc)

GIII

GII +GIII

(
GII +GIII

GT

)η
(25)

The onset of delamination criterion is predicted using the failure index: GT/GC ≥ 1,
where GT = GI +GII +GIII

The three above criteria are referred as the typical criteria [25]. Figure 8 shows pre-
dictions of the different mixed-mode delamination propagation criteria and corresponding
experimental data for CFRP IM7/977-2 [9].
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Figure 5. Comparison of mode I SERRs for a (90/-45/+45/0/d/0/+45) plate subjected to an opening
load. ESAComp results are presented with red curves.

Figure 6. Comparison of mode II SERRs for a (90/-45/+45/0/d/0/+45) plate subjected to an opening
load. ESAComp results are presented with red curves.

77



Figure 7. Test methods used to measure GIC (A), GIIC (B) ja η (C) [2].

Figure 8. Mathematical model vs. experimental data for the mixed-mode delamination propagation.
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Figure 9. A solid laminate with explicitly defined through-the-width delamination is loaded in compres-
sion [26].

Figure 10. ESAComp Result tracker (top left) indicates during the solution phase how the maximum
resultant displacement evolves as a function of the load increments. FE mesh with contours (bottom)
shows the value of the delamination failure index at the delamination fronts. Line charts (right) illustrate
the relation of GI/GIc, GII/GIIc and f(B −K) at the delamination fronts.
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Examples

Delamination of a solid laminate

The first ESAComp example repeats the study described in [26]. A solid laminate with
explicitly defined through-the-width delamination is loaded in compression (see Figure
9). The onset of delamination is typically driven by the local buckling and mode I is the
most critical. In the reference, geometrically nonlinear behavior initiates at strain level
of 0.18 %. Respectively, the onset of delamination begins at 0.22 %.

ESAComp geometrically nonlinear analysis was run with 20 sub-steps. ESAComp Re-
sult tracker indicates during the solution phase how the maximum resultant displacement
evolves as a function of the load increments (see Figure 10). Delamination analysis is per-
formed after the last sub-step and ESAComp prediction for the onset of delamination is
well in line with the reference. B-K delamination criterion yields f = 1.1, which indicates
delamination propagation. This is shown in Figure 10. Line charts illustrate the relation
of GI/GIc, GII/GIIc and f(B −K).

Debonding of a solid skin laminate

In the second ESAComp example a thick sandwich structure containing a through-the-
width debond of the skin laminate is subjected to compression (see Figure 11). The
reference study is described in [27]. ESAComp delamination analysis predicts the onset
of delamination with the load level of 10.3 kN. Experimental tests indicated that the
debonding propagation starts at 9.3 kN.

The initial delamination amplitude corresponded to 0.2 mm and the shape of the de-
lamination resembled a half-sine wave with the maximum deflection at the center consis-
tent with Digital Image Correlation measurements. Identical imperfection was considered
in the ESAComp analysis. The critical load for the onset of delamination was rather
sensitive to the imperfection amplitude and with amplitude of 0.5 mm the critical load
level decreased to 9.6 kN.

It should be noted that at the load level of 9.0 kN maximum strain level in compression
was over 1.4 % at the debonded skin laminate. It can be expected that some material
degradation may have been taken place before the onset of delamination, which was not
considered in the simulation.

In this specific case the critical delamination mode is opening. Benchmark studies
(refer to Figure 5) have been made for various laminate and load configurations. Generally,
CTE/NSF method gave ∼5 % too optimistic delamination onset loads when compared
to the full 3D model and standard VCCT. This partly explains slightly too optimistic
prediction for the onset of delamination.

Conclusions

Conducted work presents fast and accurate approach for the prediction of onset of delami-
nation for solid and sandwich laminates that contain explicitly defined through-the-width
delamination. Mode decomposition compares well with the results obtained with 3D ele-
ments and using VCCT. Onset of delamination corresponds well against the model that
utilized Reissner-Mindlin plate theory and the modified VCCT along the delamination
front. Validation against experimental results shows good correspondence for the thick
sandwich structure. In the current implementation the described solution is limited to
single delamination in the through-the-thickness direction, but it can be extended to
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Figure 11. A thick sandwich structure containing a through-the-width debond of the skin laminate
subjected to compression (left). FE mesh with contours (bottom right) shows the value of the Gtot at
the delamination fronts. Line chart (top right) illustrate the relation of GI/GIc at the delamination
fronts.

embedded delaminations. Single or multiple through-the-width and/or embedded delam-
inations could be defined at the same interface. For embedded delaminations contact
elements shall be included to avoid inadmissible delamination modes.

ESAComp delamination module provides automated model creation for limited use
cases. Solution time is at least two orders of magnitude smaller than for full 3D FE solu-
tion. All result items are easily accessible for the last load increment of the geometrically
nonlinear analysis. ESAComp provides extensive material database including a collection
of fracture toughness values for different fiber reinforced plastics. Together these aspects
considerably lower the threshold to start simulation of delamination for laminates. For
niche applications this approach provides complete solution to estimate the onset of de-
lamination. The method does not predict the propagation of the delamination.
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petri.kere@kone.com

Mikko Lyly
ABB Oy
P.O. Box 186, FI-00381 Helsinki
mikko.lyly@fi.abb.com

84


	Introduction
	Reissner-Mindlin-von Kármán type shell facet model
	Constitutive relation for a single layer
	Kinematic relations for a laminate
	Constitutive relations for a laminate
	The shell facet model

	VCCT with plate theory
	Principle of VCCT
	Crack tip element

	Benchmark
	Onset of delamination
	Material properties
	Failure criteria

	Examples
	Delamination of a solid laminate
	Debonding of a solid skin laminate

	Conclusions
	Acknowledgement

