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Summary. In this paper two partially complementary formulations of the simple phenomeno-
logical Kachanov-Rabotnov continuum damage constitutive model are presented. The models
are based on a consistent thermodynamic formulation using proper expressions for the Helmholtz
free energy or its complementary form of the dissipation potential. Basic features of the models
are discussed and the behaviour in tensile test and creep problems is demonstrated.
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Introduction

To model continuous degradation of a material Kachanov introduced in 1958 a formulation
where evolution of a single internal variable continuously reduces the elastic properties [8].
Physically such variable, which he called damage index or integrity, can be interpreted
as a ratio of the differential intact area element to the original area element. For the
evolution of the integrity φ, he proposed the following kinetic law

φ̇ = A

(

σ

φ

)n

, (1)

where the superimposed dot denotes time rate and A, n are material parameters which can
depend on e.g. temperature. For an undamaged material φ = 1 and during the damaging
process it decreases monotonically to the value 0 in the fully damaged state. The ratio
σ/φ he called the effective stress, which is the net stress acting on the undamaged area.
Kachanov used his theory in predicting creep failure times, see also [9]. Rabotnov [22]
generalized Kachanov’s evolution equation (1) to the form

φ̇ =
A

φk

(

σ

φ

)n

, (2)

1Corresponding author: reijo.kouhia@tuni.fi
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where k is an additional material parameter. Since then, continuum damage mechanics
has developed into an important and active field of continuum mechanics exemplified by
a myriad of scientific articles and numerous books, e.g. [5, 12, 13, 16, 27].

Thermodynamic formulation

In this paper two consistent thermodynamic descriptions to derive the constitutive be-
haviour for an elastic damaging material, closely related to the original Kachanov-Rabotnov
model, are described. In both descriptions reversible behaviour is obtained from free en-
ergy functions and irreversible damage processes are captured via dissipation potential
functions.

In the first model the specific free energy per unit mass is assumed to be a function
of the strain tensor ε and damage D as

ψ = ψ(ε, D). (3)

Damage is related to integrity as D = 1 − φ and it can be viewed as a ratio of damaged
differential area to original differential area, see e.g. [13, Section 1.2].

In the second model stress σ and damage α are used as the independent state variables
of the free energy function2

ψc = ψc(σ, α). (4)

For clarity different symbols for the damage variable are used in the models. These two
free energies (3) and (4) are related to each other by the partial Legendre transformation
as 3

ρψ + ρψc = σ : ε, (5)

where ρ is the density of the material.
The dissipation potential functions for the two models are denoted as

ϕ = ϕ(Y ), and ϕc = ϕc(Z), (6)

which are expressed in terms of the thermodynamic forces Y and Z dual to the fluxes Ḋ
and α̇, respectively. The dissipation potentials are associated with the power of dissipation
γ, such that

γ =
∂ϕ

∂Y
Y, or γ =

∂ϕc

∂Z
Z. (7)

Convexity is not a necessary property of the dissipation potentials but the condition that
the products (∂ϕ/∂Y )Y or (∂ϕc/∂Z)Z are non-negative is essential for the fulfillment of
the dissipation inequality.

For every thermodynamically admissible process the Clausius-Duhem inequality

γ ≥ 0, (8)

has to be satisfied. In the absence of thermal effects it can be expressed as

γ = ρψ̇ + σ : ε̇, (9)

2A generalization of this approach for tensorial damage variable is given e.g. by [4, 10].
3The free energy ψ is known as the Helmholtz free energy and ψc is the opposite value of the Gibbs

function, see e.g. [7, 14].
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written in terms of the free energy (3). An alternative expression is obtained for the
free energy function (4) by differentiating equation (5) by parts with respect to time and
assuming constant density, which results in

ρψ̇ = σ̇ : ε+ σ : ε̇− ρψ̇c, (10)

and substituting it into the expression of dissipation power (9) gives

γ = ρψ̇c − ε : σ̇. (11)

Considering definition (3) in the dissipation power (9) gives

γ =

(

σ − ρ
∂ψ

∂ε

)

: ε̇− ρ
∂ψ

∂D
Ḋ, (12)

and using (4) in (9) results in the counterpart expression

γ =

(

ρ
∂ψc

∂σ
− ε

)

: σ̇ + ρ
∂ψc

∂α
α̇. (13)

The general forms of the constitutive equations are obtained when definition (7)1 is
equated with (12) and (7)2 with (13). In particular, defining that

Y = −ρ
∂ψ

∂D
and Z = ρ

∂ψc

∂α
, (14)

results in
(

σ − ρ
∂ψ

∂ε

)

: ε̇+

(

Ḋ −
∂ϕ

∂Y

)

Y = 0, (15)

and
(

ρ
∂ψc

∂σ
− ε

)

: σ̇ +

(

α̇−
∂ϕ

∂Z

)

Z = 0. (16)

Since these equations have to be satisfied for all thermodynamically admissible processes
ε̇, Y, σ̇ and Z, the general constitutive equations derived from the potential functions (3),
(4) and (6) have the forms

σ = ρ
∂ψ

∂ε
and Ḋ =

∂ϕ

∂Y
(17)

and

ε = ρ
∂ψc

∂σ
and α̇ =

∂ϕc

∂Z
. (18)

Particular models

Two different partially complementary simple formulations to describe elastic damag-
ing behaviour are given. The first formulation is based on the free energy (3) and the
dissipation potential (6)1, and the particular forms studied are given as

ρψ(ε, D) =
1

2
(1−D)ε : C : ε and ϕ(Y ;D) =

1

r + 1

Yr
(1−D)ptd

(

Y

Yr

)r+1

(19)

where C is the elasticity tensor. Parameters td, r and p are associated with the damage
evolution, whereas Yr is a reference value of the thermodynamic force Y that can be
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chosen freely. Naturally, the value chosen for Yr influences the value of characteristic
damage time td. The particular choice used for Yr is given below.

Corresponding expressions for the second formulation are based on the free energy (4)
and the dissipation potential (6)2, and written as

ρψc(σ, α) =
1

2
(1 + α)σ : C−1 : σ and ϕc(Z;α) =

1

m+ 1

(1 + α)mZr

tcd

(

Z

Zr

)n+1

, (20)

where parameters tcd, n and m are associated with the damage evolution. Again Zr is a
reference value of the thermodynamic force Z and can be chosen freely.

Making use of eqs. (17) and choices (19) yields the following constitutive equations

σ = (1−D)C e : ε, (21)

Ḋ =
1

td(1−D)p

(

Y

Yr

)r

. (22)

For the second model use of eqs. (18) and choices (20) results in the following constitutive
equations

ε = (1 + α)C−1 : σ, (23)

α̇ =
(1 + α)m

tcd

(

Z

Zr

)n

. (24)

Furthermore, the thermodynamic forces Y and Z can be written as

Y = −ρ
∂ψ

∂D
=

1

2
ε : C : ε =

1

2(1−D)2
σ : C−1 : σ, (25)

Z = ρ
∂ψc

∂α
=

1

2
σ : C−1 : σ =

1

2(1 + α)2
ε : C : ε. (26)

A reasonable choice for the reference values Yr and Zr is

Yr = Zr =
σ2
r

2E
=

1

2
Eε2r , (27)

where σr = Eεr is a reference stress, and εr is a corresponding reference strain.

Model characteristics

In this section simple uniaxial cases are studied. For further manipulations of the first
model, it is easier to work with integrity φ = 1−D. The specific free energies (19)1 and
(20)1 in a uniaxial case are

ρψ(ε, φ) = 1
2
φEε2, and ρψc(σ, α) = 1

2
(1 + α)

σ2

E
, (28)

and the dissipation potentials (19)2 and (20)2 now read

ϕ(Y ;φ) =
1

r + 1

Yr
φptd

(

Y

Yr

)r+1

, and ϕc(Z;α) =
1

n+ 1

(1 + α)mZr

tcd

(

Z

Zr

)r+1

. (29)
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In this specific model the thermodynamic forces Y and Z are expressed as

Y = −ρ
∂ψ

∂D
= ρ

∂ψ

∂φ
=

1

2
Eε2 =

1

2

σ2

φ2E
, and Z = ρ

∂ψc

∂α
=

σ2

2E
=

1

2(1 + α)2
Eε2. (30)

Substituting our specific choices (28) and (29), the constitutive equations become

σ = φEε, (31)

φ̇ = −
1

φptd

(

Y

Yr

)r

= −
1

φptd

(

E2ε2

σ2
r

)r

= −
1

φptd

(

ε

εr

)2r

, (32)

where εr = σr/E.

Uniaxial tensile test

Model 1

Now the problem is solved in the uniaxial constant strain rate tensile test ε(t) = ε̇0t. The
evolution equation for the integrity variable φ has to be integrated from the undamaged
state, φ = 1 to a damaged state 0 < φ < 1, or even to the fully damaged state φ = 0.
Using (32) yields

∫ φ

1

φpdφ = −

∫ t

0

1

td

(

ε̇0t

εr

)2r

dt,

which, if p 6= −1, results in

φ =

[

1−
(p+ 1)εr

(2r + 1)ε̇0td

(

ε

εr

)2r+1
]1/(p+1)

, (33)

while in the case p = −1, the result is

φ = exp

[

−
1

(2r + 1)

εr
ε̇0td

(

ε

εr

)2r+1
]

. (34)

Note that ε̇0td is dimensionless. For the case k 6= 1, the stress-strain relation is

σ

σr
=

[

1−
(p+ 1)εr

(2r + 1)ε̇0td

(

ε

εr

)2r+1
]1/(p+1)

(

ε

εr

)

. (35)

Observe that a limiting strain εfrac exists for p > −1, i.e.the tensile specimen will break
when

εfrac
εr

=

(

(2r + 1)ε̇0td
(p+ 1)εr

)1/(2r+1)

.

In the following figures the behaviour of the model is investigated by varying the param-
eters.

The ultimate tensile stress, i.e. the fracture stress σfrac can be found to occur at the
strain

ε

εr
=

[

(2r + 1)ε̇0td
(2r + p+ 2)εr

]1/(2r+1)

, (36)
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r = 2, 4, 6, p = 0, ε̇0td/εr = 1

ε/εr

σ
/σ

r

21.510.50

1

0.8

0.6

0.4

0.2

0

p = −2, 0, 1, r = 4, ε̇0td/εr = 1

ε/εr
σ
/σ

r

21.510.50

1

0.8

0.6

0.4

0.2

0

(a) (b)

Figure 1. Stress-strain relation in a uniaxial constant strain-rate tensile test. (a) The effect of the r-
parameter variation. Increase of the r-parameter makes the model more brittle, r = 2 red solid, r = 4,
green dashed, r = 6 blue dotted curve. (b) The effect of the p-parameter variation. Increasing k-parameter
makes the model more brittle, p = −2 red solid, p = 0, green dashed, p = 1 blue dotted curve.

and the fracture stress has the expression

σfrac
σr

=

(

2r + 1

2r + p+ 2

)
1

p+1
(

(2r + 1)

(2r + p+ 2)

ε̇0td
εr

)
1

2r+1

=

(

2r + 1

2r + p+ 2

)
2r+p+2

(p+1)(2r+1)
(

ε̇0td
εr

)
1

2r+1

. (37)

In figure 1(a) the parameter r is varied while keeping the other parameters p and td
fixed. Increasing the r-parameter increases the ultimate tensile strength, however, it also
increases the “brittleness”.

In figure 1(b) the parameter p is varied while keeping the other parameters r and td
fixed. Increasing the p-parameter decreases the ultimate tensile strength, however, it also
increases the “brittleness”. It can be seen that if p < −1 the model shows terminal phase
ductility, thus σ → 0 when ε→ ∞.

If the loading rate is increased and the other parameters are constant, the behaviour
is similar but the ultimate stress is increasing with increasing loading rate, see figure 2.

Dependency of the fracture stress σfrac on the parameters is shown in figures 3, 4. Note
that a logarithmic scale is used for the vertical axes in figure 4.
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p = 0, r = 4, ε̇0td/εr = 1/2, 1, 2
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Figure 2. Stress-strain relation in a uniaxial constant strain-rate tensile test for varying ε̇td, i.e. either td
varied or the loadig rate ε̇0. Increasing the loading rate increases the maximum stress: ε̇0td/εr = 1/2 red
solid, ε̇0td/εr = 1, green dashed, ε̇0td/ǫr = 2 blue dotted curve.
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Figure 3. Fracture stress as a function of the r-parameter and with different k-parameter values: p = −2
red solid, p = 0 green dashed, p = 1 blue dotted curve. In all cases ε̇0td/εr = 1.
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r = 2, 4, 6, p = 1
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Figure 4. Fracture stress as a function of strain rate. (a) p = 1 and the r-parameter has values: r = 2 red
solid, r = 4 green dashed, r = 6 blue dotted curve. (b) r = 4 and the p-parameter has values p = −2 red
solid, p = 0 green dashed and p = 1 blue dotted line.

Model 2

For the second model (20) integration of the constitutive equation results in

α =

[

1 +
(2n+ 1−m)

(2n+ 1)

εr
tcdε̇0

(

ε

εr

)2n+1
]1/(2n+1−m)

− 1, m 6= 2n+ 1, (38)

σ

σr
=

1

1 + α

ε

εr
=

[

1 +
(2n+ 1−m)

(2n+ 1)

εr
tcdε̇0

(

ε

εr

)2n+1
]1/(m−2n−1)

(

ε

εr

)

. (39)

If m = 2n+ 1, then the solution for the damage α is

α = exp

[

1

(2n+ 1)

εr
tcdε̇0

(

ε

εr

)2n+1
]

− 1. (40)

It is easy to observe by comparing results (35) and (39) that in this particular case
the two models yield identical stress-strain responses if

n = r, m = p + 2n+ 2 and tcd = td. (41)

However, it should be noticed that the damage variables are not identical, i.e. D 6= α.

Creep test

Next, the models are analysed in a creep test where the stress is kept constant, σ = ζσr,
where ζ is a non-dimensional constant. Therefore it is advisable to use the stress form of
the thermodynamic force (30). Then for the first model

φ̇ = −
1

φptd

(

Y

Yr

)r

= −
1

φp+2rtd

(

σ

σr

)2r

= −
1

φp+2rtd
ζ2r. (42)
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r = 2, 4, 6, p = 0
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Figure 5. Time to fracture in a constant stress creep test. Parameter r varied, r = 2 red solid, r = 4,
green dashed, r = 6 blue dotted line.

Integration results in

φ =

(

1− (p+ 2r + 1)ζ2r
t

td

)1/(p+2r+1)

. (43)

The fracture time tfrac is obtained when φ = 0, resulting in

tfrac
td

=
1

(p+ 2r + 1)ζ2r
=

1

p+ 2r + 1

(

σ

σr

)

−2r

. (44)

The effect of the r-parameter is shown in figure 5 in a double logarithmic scale.
For the second model the damage variable α grows unbounded at time

tfrac
tcd

=
1

(m− 1)ζ2n
=

1

m− 1

(

σ

σr

)

−2n

. (45)

Creep strain results are shown in figure 6 for ζ = 0.5 and relations (41) between the
model parameters are used. Similar to the case of constant strain-rate straining, the two
models result in equivalent behaviour.

On parameter estimation

Since calibration of elasticity parameters poses no problem, only the determination of
parameters related to the damage evolution is discussed. There are three parameters r, p
and td to be calibrated. However, the p-parameter influences only the material’s post-
peak behaviour and near the region of complete failure. Thus the parameter p is chosen
in advance based purely on computational convenience. The remaining two “real” pa-
rameters r and td can be determined from two tensile/compression tests performed with
different strain-rates. Denoting ε̇01 and ε̇02 the two test strain-rates and σfrac,1, σfrac,2 the
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Figure 6. Creep behaviour with ζ = 0.5, r = 4, p = 1, and (41) valid for the model 2.

corresponding fracture stresses, from (37) it is found that

r =
1

2

(

ln(ε̇02/ε̇01)

ln(σfrac,2/σfrac,1)
− 1

)

. (46)

The parameter td is then obtained from either of the failure tests as

td =
εr
ε̇0i

(

1

β

σfrac,i
σr

)1/(2r+1)

, i = 1 or 2, where β =

(

2r + 1

2r + p+ 2

)
2r+p+2

(p+1)(2r+1)

. (47)

Dispersion analysis

Dispersion is the phenomenon that harmonic waves with different wave lengths or fre-
quencies propagate with different velocities. The ability to transform the shape of waves
is a necessary though not sufficient condition for continua to capture localisation phe-
nomena [25]. In a classical strain-softening continua, the waves are not dispersive, which
means that the continuum is not able to transform propagating waves into stationary
localisation waves [24]. In dispersion analysis, a single linear harmonic wave is considered
and the displacement field u for an infinitely long 1-D continuum has the form

u(x, t) = U exp [i(kx− ωt)] , (48)

in which U is the amplitude, k is the wave number and ω is the angular frequency.
In [2] dispersion analysis of the elastic-damaging material was done for the Kachanov-

Rabotnov model in the special case p = 1. Here, the analysis is generalized to arbitrary
positive values of the p-parameter.

The equation of motion for a uniform bar is

ρ
d2u

dt2
−

dσ

dx
= 0, (49)
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where ρ is the mass density of the material. For the dispersion analysis, the equations
(49) and (21)-(32) are written in a non-dimensional form by defining the following non-
dimensional quantities:

τ = t/te, te = L/ce, where ce =
√

E/ρ, (50)

ξ = x/L, ū = u/L, s = σ/σr, (51)

where L a length parameter, e.g. the wavelength corresponding to the lowest natural
frequency and ce is the speed of an elastic wave. In addition, it is convenient to define the
relative strain

e = ε/εr. (52)

The following non-dimensional time is also used

τd = td/te. (53)

Using the non-dimensional quantities, the equation of motion (49) takes the form

¨̄u− εrs
′ = 0, where ¨̄u =

d2ū

dτ 2
and s′ =

ds

dξ
. (54)

In the sequel, the superimposed dot represents the derivative w.r.t. the non-dimensional
time τ and the prime the derivative w.r.t. the non-dimensional spatial coordinate ξ. If
needed, the superimposed circle will denote the derivative w.r.t. real time, i.e.

◦

ε =
dε

dt
. (55)

The constitutive equations (21)-(32) take the form

s = φe, (56)

φ̇ = g(φ, e) or φ̇ = g̃(φ, s), (57)

and the non-dimensional form of the wave is

ū(ξ, τ) = Ū exp[i(k̄ξ − ω̄τ)], (58)

where Ū = U/L, k̄ = k/L and ω̄ = ωte.
In the following, the strain form of the damage evolution equation is chosen, i.e.

φ̇ = g(φ, e) = −
1

τdφp
e2r. (59)

Linearisation of the divergence of the stress at state φ∗, s∗, e∗ has the form

Lin(s′) = φ∗e
′ + e∗φ

′, (60)

where φ′ is obtained from the linearised equations of motion

¨̄u− εrLin(s
′) = ¨̄u+ εrφ∗ − εre∗φ

′ = 0 ⇒ φ′ =
1

εre∗
¨̄u−

φ∗

e∗
e′. (61)

For the dispersion relation the rate form of the linearised equation of motion reads

...
ū − εrLin(ṡ

′) = 0 ⇒
...
ū − εr(φ∗ė

′ + e∗φ̇
′) = 0, (62)
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is needed.
Divergence of the integrity rate is obtained as

φ̇′ = gφφ
′ + ges

′ = gφφ
′ + geεr

−1 ¨̄u, (63)

where

gφ =
∂g

∂φ

∣

∣

∣

∣

∗

= −
p

τdφ
k+1
∗

e2r
∗

=
p

φ∗

g(φ∗, e∗) =
p

φ∗

g∗, (64)

ge =
∂g

∂e

∣

∣

∣

∣

∗

= −
2r

τdφk
∗

e2r−1
∗

=
2r

e∗
g∗. (65)

Taking into account definitions (59)-(65) finally results in

...
ū − gφ ¨̄u− φ∗

˙̄u′′ + (2r + p)g∗ū
′′ = 0. (66)

Substituting the waveform (58) into equation (66) gives

iω̄(ω̄2 − φ∗k̄
2) + gφω̄

2 + (2r + p)g∗k̄
2 = 0. (67)

This equation can only be satisfied if the wavenumber is complex, i.e. k̄ = k̄r + ᾱi, which
means that the harmonic wave is attenuated exponentially when traversing through the
bar as

ū(ξ, τ) = Ā exp(−ᾱξ) exp[i(k̄rξ − ω̄τ)]. (68)

Substituting the expression for a damped harmonic wave (68) into (66) yields

i
[

ω̄3 − φ∗ω̄(k̄
2
r − ᾱ2) + 2(2r + p)g∗k̄rᾱ

]

+gφω̄
2+2φ∗ω̄k̄rᾱ+(2r+p)g∗(k̄

2
r − ᾱ

2) = 0. (69)

Since both the real and imaginary part of this expression must vanish, it will result in two
equations from which the wavenumber k̄r and the damping coefficient ᾱ can be solved:

ω̄3 − φ∗ω̄(k̄
2
r − ᾱ2) + 2(2r + p)g∗k̄rᾱ = 0, (70)

gφω̄
2 + 2φ∗ω̄k̄rᾱ + (2r + p)g∗(k̄

2
r − ᾱ2) = 0. (71)

Multiplying equation (70) by (2r + p)g∗ and (71) by φ∗ω̄ and summing the resulting
equations by parts enables elimination of the ᾱ2-term, resulting in

ᾱ = −
rg∗ω̄

3

φ2
∗
ω̄2 + (2r + p)2g2

∗

1

k̄r
=
a0
k̄r
. (72)

Substituting this back into (70) gives

k̄4r − a2k̄
2
r − a20 = 0, (73)

where

a2 =
ω̄2

φ∗

(

1−
2r(2r + p)g2

∗

φ2
∗
ω̄2 + (2r + p)2g2

∗

)

=
ω̄2

φ∗









1−
1

2r + p

2r
+

φ2
∗
ω2

2r(2r + p)g2
∗









. (74)
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Figure 7. Phase velocity c as a function of angular frequency ω for different values of p-parameter at peak
stress: r = 4, ε̇td/εr = 1 .

Clearly the last term in (73) is positive, but the sign of a2 is positive only if

2r + p

2r
+

φ∗ω
2

2r(2r + p)g2
∗

> 1. (75)

This is true if r > 0 and p > 0. Thus, the solution of (73) can be written as

k̄2r =
1
2
|a2|

(

sign(a2) +
√

1 + 4(a0/a2)2
)

. (76)

The limit for the damping factor ᾱ is

lim
ω̄→∞

ᾱ = −
rg∗

φ
3/2
∗

=
re2r

∗

τdφ
p+3/2
∗

. (77)

In fig. 7 the phase velocity c and the group velocity cR are plotted as a function of
the angular frequency ω with different values of the p-parameter. As can be noticed in
the figures the bar shows both normal dispersion, i.e. c > cR, and anomalous dispersion
behaviour c < cR [1].

In fig. 8 the decay parameter α is plotted as a function of the angular frequency ω for
different values of the p-parameter.

Finite element analysis

For strain-softening inviscid solids localisation takes place in a plane of zero thickness.
Viscosity added to either plasticity or damage models may bring in the desired non-zero
material length-scale. To investigate the regularizing behaviour of the Kachanov-Rabotnov
continuum damage model, a one-dimensional finite element analysis is carried out. A bar
fixed at x = 0 and subjected at x = L to either a linearly increasing stress σ(t) = ησrt/td
or a linearly increasing displacement u(L, t) = ηǫrLt/td is analysed using different uniform
mesh sizes.
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Figure 8. Decay parameter α as a function of angular frequency ω for different values of p-parameter at
peak stress: r = 4, ε̇td/εr = 1 .

Table 1. Dependency of time to fracture on number of elements.

tfrac/td
elements traction BC displacement BC

10 39.10 47.80
100 38.49 47.17
1000 38.40 47.07
10000 38.39 47.05

If figures 9 and 10 damage profiles analysed by using 10, 100, 1000 and 10000 elements
are shown for the models (19) and (20), respectively. The model parameters are related as
in (41) with p = 1, r = 2 and the loading rate is defined with η = 0.01. A standard central
difference scheme is used to integrate the equations of motion with a constant time-step
equal to the critical time step of the elastic bar.

Fracture times are tabulated in table 1. Results for both models are almost equivalent.
In model (20) the damage variable α has no upper bound and thus time to fracture is
declared when strain exceeds the value 2εr. Convergence of the fracture time is fast; the
result with the coarsest mesh having ten elements differs less than 2% from the result
obtained with the finest mesh. It is clearly seen that the model regularises the strain-
softening problem and there exists a clear material length scale.

From the numerical results, it can be concluded that the width of the localisation zone
lloc is constant if

(ε̇)2r

td
= constant, (78)

which could also be deduced from (33)-(35).
Wang studied localisation of strain softening viscoplastic solids [26]. In the case of

pure shearing of strain softening von Mises viscoplastic solid, he obtained the following
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Figure 9. Damage (D) profiles of the model (19) along the axis of the bar for uniform finite element
meshes consisting of 10, 100, 1000 and 10000 elements. Traction loading at x = L.
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Figure 10. Damage (α) profiles of the model (20) along the axis of the bar for uniform finite element
meshes consisting of 10, 100, 1000 and 10000 elements. Traction loading at x = L.
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Figure 11. Damage (D) profiles of the model (19) along the axis of the bar for uniform finite element
meshes consisting of 10, 100, 1000 and 10000 elements. Loading by prescribed displacement u(L, t).

approximation of the material length scale

lvpmat ≈
cgη

∗σ0
3
4
G− h

, (79)

where G is the shear modulus, cg =
√

G/ρ the elastic shear wave velocity, h the softening
modulus and η∗ the viscosity. He did not consider the material length scale dependency
on the applied strain rate. However, it is known that decreasing the strain-rate shortens
the material length scale [3, 11, 17]. For the elastic damaging Kachanov-Rabotnov type
solid the material length scale is a function of the strain rate, the elastic wave speed and
the parameters r, p and td, i.e.

ldmat = f(ε̇, c, r, p, td). (80)

A numerical localisation study is performed with varying prescribed rate η and the
damage localisation width is defined as the measure of the domain Ωloc defined as

Ωloc = {x |D∗ ≤ x ≤ 1} (81)

whereD∗ is the damage value at fracture stress for quasi-static constant strain-rate loading

D∗ = 1−

(

2r − 1

2r + p + 2

)1/(p+1)

, (82)

and it is independent of the applied strain-rate.
The width of the localisation zone is shown as a function of the loading rate η in

figure 12 for three different mesh sizes h = L/100, L/1000 and L/10000 and for the cases
r = 2, p = 1, and r = 4, p = 1. As it can be seen, the width of the damage localisation
zone is mesh-size independent if the loading rate satisfies η / 0.75.

In figure 13 the damage localisation width is shown in a semi-logarithmic plot as a
function of the parameter r. As it can be seen, the localisation width converges with
respect to the mesh-size and the relationship is almost linear in the logarithmic scale.
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Figure 12. Damage localisation width as a function of the prescribed loading rate, r = 2 (lhs), r = 4
(rhs). In both cases p = 1.
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Figure 13. Damage localisation width as a function of the parameter r for the prescribed loading rate
η = 0.5 and p = 1.
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Concluding remarks

Two different formulations of the well-known Kachanov-Rabotnov continuum damage
model have been investigated using two simple uniaxial loading cases, namely the con-
stant strain rate tensile test and creep test. Moreover, dispersion analysis has been carried
out. It is shown that the two models yield identical results if certain simple algebraic re-
lations between the model parameters are satisfied. However, the models are not identical
since the damage parameters in the models have different meanings. Numerical compu-
tations have also revealed that the models have intrinsic length-scales and deformation
and damage localise into a zone with finite length. However, in dynamic case the models
predict wave speeds higher than the elastic one, which is physically questionable. Fur-
thermore, the damage localisation depends on the applied rate of loading and the finite
element computations show that for slow loading rates the computations are mesh-size
independent. Thus, there exists a certain threshold after which faster loadings result in
mesh dependent solutions.

It is well known that using an integral type non-local constitutive equation or inclusion
of higher order spatial displacement gradients, as well as damage gradients, brings the de-
sired length-scale into the material model, see e.g. [6, 15, 18, 19, 20, 21, 23]. However,
the damage evolution equation is then a partial differential equation and extra bound-
ary conditions are required. It also adds unknowns to the global equation system and
increases the computational burden. An interesting topic for further research could be an
investigation to the effect of higher order time rates to the damage evolution equation.
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[3] Y.L. Bai. Thermo-plastic instability in simple shear. Journal of

the Mechanics and Physics of Solids, 30(4):195 – 207, 1982. URL
https://doi.org/10.1016/0022-5096(82)90029-1.

[4] M. Basista. Micromechanics of damage in brittle solids. In J.J. Skrzypek and
A. Ganczarski, editors, Anisotropic Behaviour of Damaged Materials, volume 9 of
Lecture Notes in Applied and Computational Mechanics, pages 221–258. Springer-
Verlag, 2003.

[5] J. Betten. Creep Mechanics. Springer-Verlag, Berlin, 2005.

[6] M.G.D. Geers, R. de Borst, W.A.M. Brekelmans, and R.H.J. Peerlings. Strain-based
transient-gradient damage model for failure analyses. Computer Methods in Ap-

plied Mechanics and Engineering, 160(1):133 – 153, 1998. ISSN 0045-7825. URL
https://doi.org/10.1016/S0045-7825(98)80011-X.

[7] G.A. Holzapfel. Nonlinear Solid Mechanics - A Continuum Approach for Engineering.
John Wiley & Sons, 2000.

142

https://doi.org/10.1016/0022-5096(82)90029-1
https://doi.org/10.1016/S0045-7825(98)80011-X


[8] L.M. Kachanov. On the creep fracture time. Izv. Akad. Nauk SSSR. Otd. Tekhn.

Nauk, (8):26–31, 1958. (in Russian).

[9] L.M. Kachanov. Introduction to continuum damage mechanics, volume 10 of Me-

chanics of Elastic Stability. Martinus Nijhoff Publishers, 1986.

[10] M. Kachanov. Effective elastic properties of cracked solids: critical review of
some basic concepts. Applied Mechanics Review, 45(8):304–335, 1992. URL
https://doi.org/10.1115/1.3119761.
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