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Using the Abaqus CDP model in impact simulations
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Summary The understanding and assessment of accidental crash scenarios on reinforced con-
crete structures is of high interest for safety issues. Although experimental research on this topic
has already a long and successful history, there are many issues waiting to be solved as far as
numerical simulations are concerned. In this article some particularities of the Abaqus Concrete
Damaged Plasticity (CDP) model are investigated with the purpose of using efficiently the CDP
model in impact loaded reinforced concrete structure simulations. In particular, the sensitivity
of the simulation response with respect to model parameters and element size is studied. The
simulation response is compared to measurements from benchmark impact tests on reinforced
concrete plates.
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Introduction

On the role of simulations in structural integrity assessments

In the life cycle of critical infrastructures, such as nuclear power plants, large civil engi-
neering structures and industrial complexes it is often the case that the original life span
needs to be extended and the original design criteria need to be upgraded to meet the cur-
rent requirements. These requirements may change due to changes in the society, climate
or geology or due to increased risk awareness and public opinion. For example, in the
context of Finnish nuclear industry, the nuclear safety and security regulations (YVL),
[1], the criteria are subdivided into Design Basis Criteria (DBC), which include design
for normal operation and anticipated accidents, and Design Extension Criteria (DEC),
which include rare and extreme external hazards. New built power plants must meet both
DBC and DEC, but there is also strong pressure for old plants, which seek for long term
operation extension, to prove that design extension criteria are met, as well.

From the simulation point of view, the design basis criteria can mostly be addressed
with linear static and dynamic structural analysis, and there is a strong confidence within
the engineering community that the linear methods produce valid results within their
domain of application. On the contrary, design extension criteria often involve non-linear
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phenomena and simulations that are run beyond the failure point are needed to assess
structural integrity. Airplane crash simulations on nuclear power plants can be stated
for example, as illustrated in [2, 3]. The problem with full scale structural simulations
involving non-linear material models, contact algorithms and possibly runtime changes
in mesh topology, is the lack of confidence due to scarcity of validated benchmarks at
various structural scales.

The present work aims at remedying this situation by providing validation data on
hard missile impacts on reinforced concrete slabs. The material model to be validated is
the Abaqus Concrete Damaged Plasticity (CDP) model, [4], customized with the user field
extension and element removal algorithm originally proposed in [5, 6] and later enhanced
in [7]. The material model is incorporated in several benchmark impact simulations that
are compared to the respective experimental results obtained from the VTT international
share benefit IMPACT programme, phases I, II and III and the Finnish national SAFIR2

programme. In particular, the tests A11 and A12 from IMPACT I and II, respectively,
and E4 and E5 from SAFIR ERNEST3 are used, [8, 9, 10].

Concrete behavior under dynamic loading

Dynamic behavior of concrete, whether caused by monotonic or cyclic loading, is different
from the quasi static behavior. In aircraft impact, which is the main application domain
of this study, strain rates in the concrete varying from 1 to 100 s−1, are typically observed.
However, strain rates up to 106 s−1 can be observed in ballistic impact and blast loading.
In severe earthquake loading the strain rates are lower, but the loading is cyclic. Studies on
the dynamic increase factor (DIF) of plain concrete, which are performed using the Split
Hopkinson Pressure Bar (SHPB) both in compression, [11, 12], and in tension, [13], show
a noticeable increase in the DIF for strain rates higher than 1 s−1. A dynamic increase in
the fracture energy, too, can be observed in SHPB tests, [14]. Dynamic increase for lower
strain rates has also been observed in direct tensile tests, [15], with strain rates varying
from 10−6 to 10−1 1/s. Figure 1 shows a DIF increase both in compression and in tension.

(a) Compressive dynamic strength increase [11] (b) Tensile dynamic strength increase [16]

Figure 1: Dynamic increase factor of concrete strength

Although experimental tests show that concrete is a strongly strain rate sensitive

2Safety of nuclear power plants plants - Finnish national research programme
3ExpeRimental and Numerical methods for External event assessment improving SafeTy
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material, it is, however, still a matter of debate what are the physical phenomena at the
microscale behind the rate sensitivity. A short literature survey on this topic is provided
in [6]. From the Abaqus CDP model field dependency implementation point of view, there
is one particular physical phenomena that is of primary interest. In uniaxial compression,
the triaxial stress state resulting from a confinement due to the inertia effects has been
acknowledged as the main reason behind the dynamic increase of the peak stress, [17].
Confined uniaxial peak stress and corresponding strain data has been collected from two
sources, [18, 19], and plotted in Figure 2. Notice a linear dependency of the peak stress,
fcm, on the confinement ratio and a quadratic dependency of the corresponding strain,
εc1 . The Eurocode proposes a piecewise linear dependency for the peak stress dependency
on the confinement ratio, [20], with a threshold at 5% confinement ratio.
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Figure 2: Concrete compressive strength and strain dependence on confinement stress
according to Sfer, D. et Al. [18] and Vu, X.D. [19]

The confinement stress dependency of concrete hardening in a general stress state is
a necessary ingredient in any hard missile impact simulation. Without this extension of
the standard CDP material model, the concrete in front of the missile is simply too weak.
The simulations described in [6] show that the concrete plug that is formed in front of
the missile head has a very high confinement ratio due to inertia effects.

Element removal in hard missile impacts

In the context of finite elements, an important topic of discussion that frequently comes
forth in publications on impact simulations is element removal, which is used to mate-
rialize macroscopic concrete fracture, the formation of the shear cone as well as spalling
and scabbing at the front and back surfaces. In many simulations, brittle behavior of the
material and large rigid body motion of the shear cone is not possible to simulate without
proper element removal algorithm. Also steel reinforcement tensile breaking is materi-
alized using element removal, but this type of element removal algorithm is based on
different algorithms, for example the Johnson-Cook damage initiation and evolution, [4].
Although there are other numerical solutions for modeling crack formation and growth
in the finite element context, such as XFEM, adaptive re-meshing to follow crack propa-
gation or using bond interfaces between elements, these more sophisticated tools are too
costly to be used in full scale impact simulations. Discrete Element Method (DEM) based
approaches, [21], as well as meshless finite element method approaches are also used, but
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then the question of adequate reinforcement and steel-concrete bond modeling becomes
an issue.

The element deletion algorithm essentially consists in removing elements in the correct
place and at the correct time. After the element is removed, the contact algorithm
updates the contact surfaces to include also facets from the elements adjacent to the
removed one. In [22], the equivalent plastic strain in compression (PEEQ) is monitored
for each element with the CDP model. When the arbitrarily chosen cutoff value of 0.2
is reached at a given integration point, the corresponding element is removed from the
simulation. The justification of this choice is primarily numerical, since the explicit central
difference time integration algorithm proposed by Abaqus, fails if an element undergoes
too large deformations in a time increment.4 In contrast, [23] proposes an element deletion
criterion where the cutoff value of the equivalent plastic strain depends on the confining
pressure. This seems to be a natural choice, since the hardening evolution of the cohesion
stress in compression depends on the confinement rate. In [6], the proposed element
removal criterion is based on a logical “or” operation of two conditions: when, in any
integration point, the cutoff value of the equivalent plastic strain in compression (PEEQ)
is reached, or, when the cutoff value of the equivalent plastic strain in tension (PEEQT)
is reached. The cutoff value of the equivalent plastic strain in compression is a function of
the confinement rate, whereas the cutoff value of the equivalent plastic strain in tension
is a function of the maximum principal strain rate.

One of the drawbacks of all of these element removal criteria is that the element
removal does not depend on the actual stress or strain state, only on the value of the
internal hardening parameters. Therefore, in [7], an element removal algorithm based
on actual shear strain values was proposed. One of the targets in this work is to test
the proposed shear strain based element removal algorithm against a larger collection of
benchmark tests.

Description of the user extended CDP model

The built-in Abaqus CDP model is an elastic-plastic model with optional scalar stiffness
degradation accumulation. The yield surface is given by the so called “Barcelona” yield
function, shown in Equation (1), and isotropic strain hardening is defined with respect to
two independent internal hardening variables, describing tensile and compressive behavior,
respectively. Historically, the “Barcelona” yield function was first proposed in [24], but the
isotropic hardening behavior that is based on compressive and tensile equivalent plastic
strain was introduced in [25, 26]. The yield surface can be described as a modified
Drucker-Prager cone with a Rankine tension cutoff. The yield function shape is therefore
determined by both the compressive cohesive stress, σ̃c and the tensile cohesive stress,
σ̃t. In the effective stress space5, the yield function can be written as follows in terms of
the effective Mises stress, q̃, the effective hydrostatic stress, p̃ and the effective maximum

4If the deformation speed in an element is larger than the wave speed, the stable time increment
estimate is not valid and Abaqus aborts the simulation. Removing the element before it becomes too
soft and consequently the wave speed drops too low circumvents this problem.

5In this study there is no stiffness degradation specified, and therefore the effective stress is simply
equal to the actual stress
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principal stress σ̃max:

f(σ̃, σ̃c, σ̃t) =
q̃ + 3α p̃− γ 〈−σ̃max〉

1− α︸ ︷︷ ︸
modified Drucker-Prager cone

+

(
σ̃c

σ̃t

− 1 + α

1− α

)
〈σ̃max〉︸ ︷︷ ︸

Rankine tension cutoff

−σ̃c . (1)

The material parameter α is determined from compressive equibiaxial tests. The material
parameter γ = 3(1 − Kc)/(2Kc − 1) controls the magnitude of the corrective term, as
shown in Figure 3. The effect Kc can be seen in compressive stress states, in particular
in the confined uniaxial compression state.
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Figure 3: Yield surface dependency on the compressive meridian to tensile meridian ratio
Kc, deviatoric view. The original Drucker-Prager cone can be seen in 3c

The flow rule used in the CDP model is non-associative and the direction of the
flow is obtained from the outward pointing normal of a convex flow potential, which is a
smooth Drucker-Prager hyperboloid (i.e. a hyperbola of revolution around the hydrostatic
axis). The eccentricity of the hyperbola, e σ̃t0 , controls the flow behavior on the positive
(tension) side of the hydrostatic axis. The angle of the hyperbola (i.e. the angle between
the hydrostatic axis and the hyperbola asymptote) is called the angle of dilation, φ, and it
controls the amount of plastic volumetric dilation that a material point undergoes when
subject to shear deformation.

The compressive cohesive stress, σ̃c and the tensile cohesive stress, σ̃t, evolve with
respect to the scalar internal hardening variables, the equivalent plastic strain in com-
pression, εpc , and the equivalent plastic strain in tension, εpt , respectively6. The rate of the
equivalent plastic strain in compression is proportional to the minimum principal plastic
strain rate, whereas the rate of the equivalent plastic strain in tension is proportional to
the maximum principal plastic strain rate. The coefficients of proportionality depend on
the current stress state at the material point.

Although the built-in Abaqus CDP model is not able to realistically describe impact
simulations on concrete, it is possible to enhance the built-in model by user-defined field
variable dependencies. In this study, field variable dependencies based on the confinement
stress dependency of the compression hardening and strain rate dependency of tension
softening is proposed.

6In Abaqus these output variables are denoted PEEQ and PEEQT, respectively.
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Compression hardening with confinement dependency

By substituting a uniaxial confined stress state σ̃max = σ̃mid = −σ̃cnf and |σ̃min| ≤ σ̃cnf in
the yield function, (1), and considering the additive elastic-plastic strain rate decomposi-
tion the following expressions for axial effective stress and total strain are given:

|σ̃min| = σ̃c(ε
p
c ) +

1 + 2α + γ

1− α σ̃cnf , (2a)

|εmin| = εpc +
σ̃c(ε

p
c )

E
+

(
1 + 2α + γ

1− α − 2 ν

)
σ̃cnf

E
. (2b)

The parametric plot obtained from Equations 2a and 2b is the one that has to be matched
with the confined uniaxial experimental test results on concrete cylinders. Further, con-
sider a specific hardening evolution in compression, for example a polynomial of exponen-
tials, as suggested in [26]:

σ̃c(ε
p
c ) = σ̃c0

(
(1 + ac) exp(−bc ε

p
c )− ac exp(−2 bc ε

p
c )
)
. (3)

By fixing the initial effective yield stress, as suggested in the Eurocode, to σ̃c0 = 0.4 fcm,
the material parameters ac and bc can be computed as a function of the confinement
ratio, CR = σ̃cnf/fcm. The mean concrete cylinder strength at current confinement can
be computed as the product of the unconfined mean concrete cylinder strength multiplied
by a confinement increase factor. The Eurocode, [20], suggests that the confinement
increase factor on the mean concrete cylinder strength, ζ, is a piecewise linear function of
the confinement ratio: ζ(CR) = 1.0 + 5.0 CR for CR ≤ 0.05 and ζ(CR) = 1.125 + 2.5 CR
for CR ≥ 0.05. The confinement increase factor on the strain is equal to the confinement
increase factor on the mean concrete cylinder strength to the second power, εc1(CR) =
ζ2(CR) εc1 . Then, by substituting the Eurocode 2 values for mean concrete cylinder
strength and the corresponding total strain at current confinement ratio in Equations 2a
and 2b, the expression of the equivalent plastic strain when the peak stress is reached is
given as a function of the current confinement ratio:

εpc1(CR) = εc1(CR) +
(

2 ν CR− ζ(CR)
) fcm

E
. (4)

For shorthand, consider the notation µ(CR) = σ̃c

(
εpc1(CR)

)
/σ̃c0 . From (2a) it follows

that µ(CR) = 2.5
(
ζ(CR) − 1+2α+γ

1−α CR
)
. The material parameters ac(CR) and bc(CR)

are then given by Equations (5) and (6).

ac(CR) = 2µ(CR) + 2
√
µ2(CR)− µ(CR)− 1 , (5)

bc(CR) = − 1

εpc1(CR)
ln

(
1 + ac(CR)

2 ac(CR)

)
. (6)

Equation (5) leads to the constraint µ ≥ 1, which gives the theoretical upper limit for the
confinement ratio, CRUL. This upper limit for the confinement ratio is computed from
2.5
(
ζ(CRUL) − 1+2α+γ

1−α CRUL
)

= 1. The value of upper limit, CRUL, depends on the
parameters α and γ, which themselves depend on the ratios σb0/σc0 and Kc, respectively.
For example, for parameter values σb0/σc0 = 1.15 and Kc = 0.8, the upper limit CRUL

tends to infinity, which means, in this specific example case, that the expressions given in
(5) and (6) are valid for any confinement ration value. Figure 4 shows the evolution of the
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Figure 4: Stress-strain plots in confined uniaxial compressive state (C60 concrete, Kc =
0.75)

cohesion stress in compression as a function of the equivalent plastic strain in compression
for various confinement ratios (Figure 4a) and the corresponding parametric stress-strain
plot as per Equations (2a) and (2b), also for various confinement ratios (Figure 4b).

The confinement ratio field variable is defined in the USDFLD/VUSDFLD user sub-
routine. It is assumed here, that the confinement stress is a weighted average between the
current value of the maximum principal stress and the maximum value of the maximum
principal stress with respect to time. In other words, we compute the confinement ratio
at the beginning of each time increment as per Equation (7) in the user subroutine. Here,
the weight coefficients 0.4 and 0.6 are arbitrarily chosen.

CR(i) = 0.4 σ̃cnf(t
(i)) / fcm + 0.6 max

t∈[0,t(i)]
σ̃cnf(t) / fcm . (7)

Recall the effective confinement stress expression: σ̃cnf = 〈−p̃− q̃/3〉.

Tension softening with strain rate dependency

It has been shown in many experiments that the behavior of concrete in uniaxial tension
is sensitive to the size of the specimen, [27, 28]. Following the procedure indicated by
Hillerborg and his co-authors, [29, 30, 31], it is assumed that ahead of the (micro)crack
tip in a material RVE loaded in tension, there is a fracture process zone. In this zone,
the gradual coalescence of micro voids and other defects in the concrete matrix induce
propagation of the actual crack tip when tension load increases. On the other hand, the
fracture process zone is capable of transferring small stresses, which diminish as the crack
opening increases and the crack tip moves forward.

The established way to describe the fracture related phenomena in continuum me-
chanics is material softening. The CDP model enables both isotropic strain softening and
scalar stiffness degradation as means to introduce softening in the model, but in this con-
text only isotropic strain softening is used. It is assumed that the fracture energy needed
to transform a fracture process zone per unit of surface into an actual crack is a material
constant, denoted GF, and has the units of N/m. Therefore, the fracture energy is defined
as the area under the stress - displacement curve in the fracture process zone. Since the
built-in Abaqus CDP model is a local continuum formulation, the only way to attenuate
the effect of mesh dependency in numerical computations is to introduce the fracture
energy as a material parameter. Although this approach is theoretically unsatisfactory,
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since it does not solve the issue of ill-posed initial value and boundary value problem, it
nevertheless provides a practical solution to circumvent mesh size dependency. Values for
the fracture energy can be computed for various concrete grades, as shown in [32]. Lee
and Fenves, [26], suggest that the shape of the softening stress strain curve is exponential.

σ̃t(ε
p
t ) = σ̃t0 exp

(
−bt ε

p
t

)
, (8)

where σ̃t0 and bt are material constants, which may depend on the strain rate. Introduction
of the dynamic increase factor, DIFf , which multiplies the Eurocode concrete mean tensile
stress at quasi-static rate, fctm, is one way of expressing strain rate dependency. Hence,
one may define the strain rate dependent peak stress in uniaxial tension as σ̃t0 = DIFf fctm.
As shown in [14], the fracture energy is a rate dependent quantity. It can therefore be
computed from the expression DIFg GF = lch

∫∞
0
σ̃max(εpt ) ε′max(εpt ) dεpt . Computation of

the value of the integral leads to the following value for the parameter bt:

bt =
DIFf fctm

DIFg GF/lch + 1
2

(DIFf fctm)2/Ecm

. (9)

In Abaqus the user may enter cohesive tensile stress input data as a function of plastic
displacements instead of plastic strains. Then, by defining the plastic displacement wp

t =
lch ε

p
t , the cohesive stresses are computed from the relation σ̃t(w

p
t ) = σ̃t0 exp

(
−Bt w

p
t

)
,

where Bt = bt/lch. Figure 5 shows the evolution of the cohesion stress in tension as a
function of the equivalent plastic strain/displacement in tension for various strain rates
(Figures 5a and 5c) and the corresponding parametric stress-strain/displacement plots
(Figure 5b and 5d).

The dynamic increase factors DIFf and DIFg are assumed to be functions of the
relative tensile strain rate, SR = ε̇max/ε̇

QS
max, where ε̇QS

max = 10−6 1/s denotes the quasi-
static strain rate. Consider, for instance, piecewise linear functions on the logarithmic
scale. In these computations we have used DIFf = 1 + 1

12
log(SR) for log(SR) < 6 and

DIFf = −15 + 11
4

log(SR) for log(SR) ≥ 6. Likewise, we have used DIFg = 1 + 5
6

log(SR)
for log(SR) < 6 and DIFg = −60 + 11 log(SR) for log(SR) ≥ 6. The strain rate field
variable is also defined in the USDFLD/VUSDFLD user subroutine. It is assumed here,
that the strain rate is a weighted average between the current value of the strain rate and
the maximum value of the strain rate with respect to time. In other words, we compute
the strain rate at the beginning of each time increment as per Equation (10) in the user
subroutine. Here, the weight coefficients 0.4 and 0.6 are arbitrarily chosen.

SR(i) = 0.4 |ε̇max(t(i))|/ε̇QS
max + 0.6 max

t∈[0,t(i)]
|ε̇max(t)|/ε̇QS

max . (10)

The element removal algorithm

From a physical point of view, element removal in impact simulations is a means of
materializing macroscopic fracture of concrete in the continuum finite element framework.
From a numerical point of view, element removal enables necessary topological changes
in the finite element mesh so that small body deformations but large rigid body motion
can be successfully computed by the explicit time integration. In the studies done in
[23, 22], the element removal algorithm is based on the evolution of the internal hardening
variable εpc . This choice is clearly the simplest one. It is motivated by the fact that in pure
shear behavior the equivalent plastic strain in tension, εpt , rapidly plateaus to relatively
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Figure 5: Stress-strain and Stress-displacement plots in uniaxial tensile state (C60 con-
crete, solid: lch = 100mm, dashed: lch = 10mm)

small values whereas the equivalent plastic strain in compression continues to grow along
with the shear, as shown in [7]. However, as it was shown in the same study, a more
adequate element removal algorithm can be obtained by basing the element removal on
shear behavior.

In this shear behavior based removal algorithm, it is assumed that in a concrete shear
band, on the boundary of the shear cone, the strain state is close to the pure shear
strain state. Therefore the octahedral strain (multiplied by

√
2) is used as a measure of

the shear strain. This choice is motivated by the fact that in a pure shear strain state
ε = diag(1,−1

2
,−1

2
) ε, the value of the octahedral strain is εoct = ε/

√
2. To rule out strain

states that are not close to the pure shear state, but still have large octahedral strain
values, the measure that gives the pure shear content of an arbitrary strain state is given
by a combination of the following coefficients:

δ = H(εmax)

〈
1−

√
(εmid + 1

2
εmax)2 + (εmin + 1

2
εmax)2√

(εmax)2 + (εmid)2 + (εmin)2

〉
(11)

The pure shear strain content of an arbitrary strain state can thus be defined as follows:

εpsh = Γpsh δ
√

2 εoct . (12)

Hence, by setting the condition εpsh ≥ εcutoff
max whenever the the material point is not

properly confined, i.e. when CR ≤ Γcnf CRUL(Kc = 0.75), we can assume the element
at that material point can be removed from the finite element analysis. The “safety
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coefficients” Γpsh and Γcnf are provided here to prevent unduly early element deletion.
The coefficient Γpsh can be chosen by trial and error method in such a way that the
element removal algorithm produces global responses that are mesh size independent. In
this study we have chosen this coefficient to be

Γpsh =
lch
0.2

, (13)

where the characteristic length lch is given in meters. Recall also, that the cutoff strain,
εcutoff

max , depends on the value of the dilation angle, as shown in [7]. The coefficient Γcnf

is obtained by observing the size of the high confinement zone in the beginning of the
simulation. These observations lead to the choice of the value Γcnf = 0.75.

Description of the benchmark experimental tests

The benchmark experiments that the simulations are validated against are hard missile
impacts on reinforced concrete slabs. The missile is a stainless steel tube filled with non-
reinforced light weight concrete and it is shot against the target slab using pressurized air.
The target slab is held in place by a steel frame, which can be assumed stiff compared
to the stiffness of the concrete slab. The free span of the target slab is 2m by 2m, and
the steel frame connection to the slab can be assumed to be a hinged one. Detailed
descriptions of the experimental setup can be found in [9].

(a) E4 backside view (b) E5 backside view (c) A11 backside view (d) A12 backside view

(e) E4 section view (f) E5 section view (g) A11 section view (h) A12 section view

Figure 6: Backside and section views for benchmark tests plates after impact

As shown in Figure 6, four distinct tests, the E4 and E5 tests7 from SAFIR ERNEST
project, the A11 and A12 tests from VTT IMPACT phases I and II project are considered
here as candidates for model validation purposes. The expected main failure mechanism is
local shear occurring at the boundary of the plug. In addition, front surface spalling and
back surface scabbing of concrete occurs together with concrete tearing at back surface
caused by the movement of the reinforcement mesh. The missile and slab parameters for
each test can be found in Table 1. The main test output values are summarized in Table
2.

7In E4 and E5 tests there is no reinforcement in the impact area
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Table 1: Benchmark tests, missile and slab parameters

Test missile missile missile slab fcm fctm Ecm Gf bend. fsy fsu

diam. wall th. mass th. reinf.

mm mm kg mm MPa MPa GPa N/m mm MPa MPa

E4 168.3 10.0 47.5 250 51.8 2.5 35.0 144 - - -
E5 168.3 10.0 47.5 250 49.9 2.9 35.0 139 - - -
A11 168.3 10.0 46.92 250 50.5 3.6 35.7 148 10cc90 550 633
A12 168.3 10.0 47.44 250 46.2 3.4 34.8 146 10cc90 546 630

Table 2: Benchmark test output

marker quantities

Test impact penetration residual midpoint shear cone tunnelling spalled
velocity depth velocity deflection angle depth concrete
m/s mm m/s mm deg mm kg

E4 104.8 - 42 - 70 140 66.8
E5 104.2 - 49 - 66 114 141.3
A11 62.0 13 - 25 49 - -
A12 110.2 - 20.8 - 67 104 99.5

Description of the benchmark simulations

The benchmark simulations are carried out using Abaqus with explicit central difference
time integration. A quarter of the model is considered, as shown in Figure 7. The concrete
slab is bounded by steel channels in order to withstand the contact pressure from the steel
rods on both sides of the slab. These steel rods are attached to the frame that holds the
slab in place. In these simulation models, the steel frame is not modeled at all. The steel
rods, which are assumed to simulate hinged boundary conditions, are modeled as rigid
bodies and they are rigidly fixed to the frame of reference.

(a) quartermodel for
E4, E5, A11 and A12 tests

(b) reinforcement for
A11 and A12 tests

(c) reinforcement for
E4 and E5 tests

Figure 7: Models used in the simulations

The concrete of the slab is modeled using eight-node reduced integration elements
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with Abaqus default distortion and hourglass control (C3D8R in Abaqus nomenclature).
Mesh sensitivity analysis is conducted with two mesh sizes: one with characteristic element
length of 10mm (25 elements over the thickness of the slab) and another characteristic el-
ement length of 5mm (50 elements over the thickness of the slab). The steel reinforcement
is modeled using two-node linear beam elements (B31 in Abaqus nomenclature) that are
tied node-to-node to the C3D8R elements. Table 3 summarizes the essential input data
used in the simulations.

Table 3: Simulation input data summary

part element material isotropic rate degradation

type model hardening dep.

slab concrete 8-node brick CDP exponential yes user

reinforcement 2-node beam Mises plasticity quadratic yes Johnson-Cook

hard missile tube 3-node shell Mises plasticity Johnson-Cook yes Johnson-Cook

hard missile cap 4-node tetrahedron Mises plasticity Johnson-Cook yes Johnson-Cook

hard missile fill 4-node tetrahedron CDP quadratic no no

Results

The results of the simulations for the marker quantities (penetration depth, residual
velocity8 , maximum deflection at mid-slab, shear cone angle9, tunneling depth and weight
of spalled concrete) are presented in Table 4. These quantities are all evaluated at a time
frame sufficiently far from the impact time frame to be considered as “permanent” values.
Since the shear cone and tunneling depth values are measured geometrically from the
deformed element meshes, there is an important part of subjectivity in the readings.
The marker quantities can be used to investigate the sensitivity of the simulations with
respect to a change in a given parameter. On the other hand, the marker quantities from
simulations can also be compared to the marker quantities measured in the experiments
(see Table 2) in order to assess the validity of the proposed model.

In addition to the marker quantities, the missile residual plots are shown in Figures
8, 9, 10, 11 for tests E4, E5, A11 and A12, respectively. Field output plots at selected
time frames are shown in Figures 12 and 13 for the test E4, in Figures 14 and 15 for the
test E5, in Figures 16 and 17 for the test A11 and in Figures 18 and 19 for the test A12.
These field output plots give an indication on the progress of the failure mode.

Discussion

This study has two objectives. First, it aims at assessing the sensitivity of the simulations
with respect to a given parameter variation. The parameters considered here are the angle
of dilation and the element characteristic length. Second, the study aims at validating the
proposed concrete material model by comparing the simulation results to the experimental

8The residual velocity is the velocity of the missile after penetration of the slab
9The shear cone angle is defined as the angle between the axis of the shear cone and its generatrix
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Table 4: Benchmark simulation results

marker quantities

test φ lch penetration residual midpoint shear tunneling spalled
depth velocity deflection cone depth concrete

deg mm mm m/s mm deg mm kg

E4 30 10 - 46 - 30 104 44.2
E4 35 10 - 40 - 35 114 53.1
E4 30 5 - 46 - 48 151 41.2
E4 35 5 - 36 - 33 106 46.4

E5 30 10 - 44 - 34 127 44.2
E5 35 10 - 38 - 35 113 52.4
E5 30 5 - 45 - 44 141 40.3
E5 35 5 - 37 - 44 128 48.3

A11 30 10 37 - 32 51 - -
A11 35 10 31 - 27 55 - -
A11 30 5 38 - 33 40 - -
A11 35 5 33 - 29 42 - -

A12 30 10 - 37 - 47 136 47.9
A12 35 10 - 30 - 49 134 55.6
A12 30 5 - 36 - 49 131 45.3
A12 35 5 - 25 - 48 121 53.9

test results. Both the sensitivity analysis and the model validation are carried out by
considering each marker quantity separately.

Mesh size sensitivity

The chosen element mesh sizes are motivated as follows. For the coarse mesh, lch =
10mm is a maximum element size above which various local physical phenomena can
not be described accurately. For the dense mesh, lch = 5mm is a minimum element size
from computational cost point of view. An inspection of the missile residual speed plots
(Figures 8, 9, 10, 11) tells that the missile residual speed is not sensitive to the mesh size
for the given simulations. The same conclusion can be drawn by considering the relative
differences shown in Table 5, where relative differences are computed by considering the
quantities computed with the dense mesh as the reference quantities.

Sensitivity with respect to the angle of dilation

Two values of the angle of dilation are considered. The angle of 30 degrees represents a
low value and the angle of 35 degrees represents a high value of the angle of dilation. A
comparison of shear cone angles as the angle of dilation increases from 30 to 35 degrees
indicates that on average there is an increase both in the angle of the shear cone and the
weight of spalled concrete, as shown in Table 6, where relative differences are computed by
considering the quantities computed with the low dilation angle as the reference quantities.
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Table 5: Relative difference of dense and coarse mesh marker quantities

test φ penetration residual midpoint shear tunneling spalled
depth velocity deflection cone depth concrete

deg % % % % % %

E4 30 - 0 - 38 31 -7
E4 35 - -11 - -6 -8 -14
E5 30 - 2 - 23 10 -10
E5 35 - -3 - 20 12 -8
A11 30 3 - 3 - - -
A11 35 6 - 7 - - -
A12 30 - -3 - 4 -4 -6
A12 35 - -20 - -2 -11 -3

On the other hand, if one compares the residual speeds, there is, on average, a decrease of
the residual speed as the angle of dilation increases form 30 to 35 degrees. To summarize,
the simulations are sensitive to the value of the dilation angle, and therefore particular
care should be paid in the simulations when choosing the value of the dilation angle.

Table 6: Relative difference of low and high dilation angle marker quantities

test lch penetration residual midpoint shear tunneling spalled
depth velocity deflection cone depth concrete

mm % % % % % %

E4 10 - 15 - -17 -10 -20
E4 5 - 28 - 45 42 -11
E5 10 - 16 - -3 11 -19
E5 5 - 22 - 0 10 -17
A11 10 16 - 16 - - -
A11 5 13 - 12 - - -
A12 10 - 19 - -4 1 -16
A12 5 - 31 - 2 8 -19

Validation against experimental test results

Table 7 shows the relative error of the simulated marker quantities when experimental
marker quantities are considered as reference values. Based on these error estimates, the
following statements can be made. The proposed user extension to the CDP concrete
model and element deletion algorithm estimates rather accurately the residual velocity
(except the A12 benchmark test10). The estimates of spalled concrete, shear cone angle

10Since the A12 test is the only one where reinforcement is loaded up to failure, it is possible that bad
performance in this specific test is due to unproper reinforcement steel material parameters
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Table 7: Relative error with respect to experimental marker quantities

test φ lch penetration residual midpoint shear tunneling spalled
depth velocity deflection cone depth concrete

deg mm % % % % % %

E4 30 10 - -10 - 57 26 34
E4 35 10 - 5 - 50 19 21
E4 30 5 - -10 - 31 -8 38
E4 35 5 - 14 - 53 24 31

E5 30 10 - 10 - 48 -11 69
E5 35 10 - 22 - 47 1 63
E5 30 5 - 8 - 33 -24 71
E5 35 5 - 24 - 33 -12 66

A11 30 10 -185 - -28 -4 - -
A11 35 10 -138 - -8 -12 - -
A11 30 5 -192 - -32 18 - -
A11 35 5 -154 - -16 14 - -

A12 30 10 - -78 - 30 -31 52
A12 35 10 - -44 - 27 -29 44
A12 30 5 - -73 - 27 -26 54
A12 35 5 - -20 - 28 -16 46

and tunneling depth of the model is less accurate, but can still be considered as a moderate
success. In test A11, the midpoint deflection is accurately estimated. However, the
model fails to predict accurately the penetration depth, which indicates that the rate
dependent hardening characteristics of the proposed CDP model are too soft in local
punching behavior.

0

10

20

30

40

50

60

70

80

90

100

110

120

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t (ms)

v (m/s)

φ = 30deg, lch = 10mm
φ = 35deg, lch = 10mm
φ = 30deg, lch = 5mm
φ = 35deg, lch = 5mm

Figure 8: Simulation of test E4, missile speed
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Table 8: Definitions of constant quantities and parameters

Denomination Symbol Note

Eurocode mean compressive (peak) strength fcm (MPa)
Eurocode total strain at mean compressive (peak) strength εc1 (%)
Eurocode mean tensile (peak) strength fctm (MPa)
Eurocode fracture energy Gf (N/m)
Eurocode secant modulus of elasticity at 0.4 fcm Ecm (MPa)
dynamic increase factor for tensile stress DIFf (-)
dynamic increase factor for fracture energy DIFg (-)
relative tensile strain rate SR = ε̇max/ε̇

QS
max

quasi static strain rate ε̇QS
max = 10−6 1/s

confinement ratio CR = σ̃cnf/fcm

characteristic length lch (m)
equibiaxial to uniaxial initial yield ratio σb0/σc0 ∈ [1,∞]
tensile to compressive meridians slope ratio Kc = qTM/qCM ∈]1

2
, 1]

dilation angle φ ∈
eccentricity of Drucker-Prager hyperboloid e

material parameter α =
σb0/σc0−1

2σb0/σc0−1
∈ [0, 1

2
[

material parameter γ = 3(1−Kc)
2Kc−1

∈ [0,∞[

Table 9: Definitions of functions and variables

Denomination Symbol Note

total strain and strain rate tensor ε , ε̇
plastic strain and strain rate tensor εp , ε̇p

elastic strain and strain rate tensor εe , ε̇e

maximum principal plastic strain rate ε̇pmax

minimum principal plastic strain rate ε̇pmin

equivalent plastic strain rate in compression ε̇pc
equivalent plastic strain rate in tension ε̇pt
stress tensor σ
deviatoric stress tensor s = σ − p I
equivalent Mises stress q =

√
3/2 s : s

hydrostatic pressure p = tr(σ)/3
maximum principal stress σmax

minimum principal stress σmin

cohesion (yield) stress in compression σc

cohesion (yield) stress in tension σt

confinement stress σcnf = 〈−p− q/3〉
effective quantity with respect to strain equivalence ·̃
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Figure 9: Simulation of test E5, missile speed
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Figure 10: Simulation of test A11, missile speed
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Figure 11: Simulation of test A12, missile speed

196



SDV4

0.0
0.2
0.4
0.6
0.8
1.0
2.3

(a) εpsh/ε
cutoff
max at 0.50 ms, lch = 10 mm

SDV4

0.0
0.2
0.4
0.6
0.8
1.0
2.5

(b) εpsh/ε
cutoff
max at 0.50 ms, lch = 5 mm

SDV4

0.0
0.2
0.4
0.6
0.8
1.0
2.3

(c) εpsh/ε
cutoff
max at 2.0 ms, lch = 10 mm

SDV4

0.0
0.2
0.4
0.6
0.8
1.0
2.4

(d) εpsh/ε
cutoff
max at 2.0 ms, lch = 5 mm

SDV4

0.0
0.2
0.4
0.6
0.8
1.0
2.5

(e) εpsh/ε
cutoff
max at 4.0 ms, lch = 10 mm

SDV4

0.0
0.2
0.4
0.6
0.8
1.0
2.5

(f) εpsh/ε
cutoff
max at 4.0 ms, lch = 5 mm

Figure 12: Simulation of test E4, field output for φ = 30 deg
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Figure 13: Simulation of test E4, field output for φ = 35 deg
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Figure 14: Simulation of test E5, field output for φ = 30 deg
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Figure 15: Simulation of test E5, field output for φ = 35 deg
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Figure 16: Simulation of test A11, field output for φ = 30 deg
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Figure 17: Simulation of test A11, field output for φ = 35 deg
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Figure 18: Simulation of test A12, field output for φ = 30 deg
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Figure 19: Simulation of test A12, field output for φ = 35 deg
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Conclusions

The proposed user expanded Concrete Damaged Plasticity (CDP) model together with a
shear strain based element removal algorithm proposal has been investigated by simulating
four benchmark impact tests. For each benchmark test the corresponding simulations
have been carried out with various material parameter values and mesh sizes. The first
conclusion is that the proposed material model and the element removal algorithm is
mesh size independent. The second conclusion is that the material model and the element
removal algorithm is sensitive to the variation of a particular material parameter, namely
the angle of dilation. Therefore particular care should be paid in impact simulations to the
choice of that parameter. Validation of the proposed material model and element removal
algorithm against experimental results yields rather satisfactory results for the selected
benchmark tests. Nevertheless, it must be acknowledged that the range of benchmark tests
should be widened in order to generalize these conclusions to arbitrary impact simulations.
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[32] CEB Comité Euro-International du Béton. CEB-FIP model code 1990. Redwood
Books, 1993.

Alexis Fedoroff and Kim Calonius

VTT Technical Research Centre of Finland Ltd.

Kemistintie 3, Espoo, P.O. Box 1000, FI-02044 VTT, Finland

Alexis.Fedoroff@vtt.fi, Kim.Calonius@vtt.fi

207

http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.006
http://dx.doi.org/10.1007/BF02472919
http://dx.doi.org/10.1016/0008-8846(76)90007-7

	Introduction
	On the role of simulations in structural integrity assessments
	Concrete behavior under dynamic loading
	Element removal in hard missile impacts

	Description of the user extended CDP model
	Compression hardening with confinement dependency
	Tension softening with strain rate dependency
	The element removal algorithm

	Description of the benchmark experimental tests
	Description of the benchmark simulations
	Results
	Discussion
	Mesh size sensitivity
	Sensitivity with respect to the angle of dilation
	Validation against experimental test results

	Conclusions

