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Summary  This paper considers numerically the effect of pore-fluid on thermal spallation of 
granitic rock. For this end, a numerical model based on the embedded discontinuity finite 
element approach to rock fracture and an explicit scheme to solve the underlying thermo-
mechanical problem is developed. In the present implementation, a displacement discontinuity 
(crack) is embedded perpendicular to the first principal direction in a linear triangle element 
upon violation of the Rankine criterion. In the thermo-mechanical problem, the heating due to 
mechanical dissipation is neglected as insignificant in comparison to the external heat flux. This 
leads to an uncoupled thermo-mechanical problem where the only input from the thermal part to 
the mechanical part is thermal strains. This problem is solved with explicit time marching using 
the mass scaling to speed up the solution. Finally, the fluid trapped into the micro-pores is 
modelled as a material that can bear only volumetric compressive stresses. A thermal spallation 
problem of a rock sample under axisymmetry is simulated as a numerical example.  
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Introduction 

Accessing geothermal energy in most parts of the globe is hampered by the high drilling 
costs incurred from using traditional drilling technologies based solely on the 
mechanical breakage of rock. For this reason, alternative drilling methods based on 
improved concepts and/or using some non-mechanical agents to enhance/replace the 
mechanical breakage are being searched presently. One such method is the thermal jet 
drilling (see [1]) based on the thermal spallation phenomenon illustrated in Figure 1.   

Accordingly, when the surface of granite rock is heated rapidly (Figure 1a), the 
ensuing sharp temperature gradient induces a lateral compressive stress state into a layer 
adjacent to the rock surface (Figure 1b). Consequently, the favourably oriented inherent 
microcracks in rock grow (by the wing crack mechanism) parallel to the surface (Figure 
1b) and, when the crack reaches the critical strength, a heated fragment buckles and is 
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ejected out as a spall (Figure 1c). The spallation is facilitated by mismatching elastic 
and thermal properties of the constituent rock minerals, i.e. discontinuities of the elastic 
and thermal properties at the mineral boundaries create stress concentrations that drive 
thermal cracking. According to the experiments by Kant and von Rohr [2], the minimal 
required temperature for spallation to occur in granite is about 500–600 C.  

 

Figure 1. Principle of thermal spallation (upper row) and pore-fluid enhanced thermal spallation 

(lower row): In both cases, the stages are a) the heating of the rock surface, b) the build-up of 
the lateral stress field and the consequent crack propagation, and c) the resulting ejection of the 

chips called spalling.  

Thermal spallation, or weakening rock by a heat shock in general, can be used in mining 
and excavation to assist/replace the traditional mechanical breakage, as mentioned 
above. For this reason, it has been the topic of several numerical studies, see [3–5] for 
example. In the paper by Walsh and Lomov [3], the authors proposed a modified 
version of the spallation model, illustrated in the lower row in Figure 1, where the 
heated fluid trapped in the micropores in granite enhances the spallation. Despite the 
low porosity (usually less than 1.5 %) of granite rocks, the fluid heated in the 
micropores served to increase the damage in their numerical simulations. In the present 
paper, the effect of pore-fluid on the spallation in granite is numerically studied.    

For this end, a finite element based numerical method developed by Pressacco and 
Saksala [4] and Saksala [5] is further extended to account for the pore-fluid pressure. In 
this approach, the rock fracture is modelled by the embedded discontinuity finite 
elements [6]. In comparison to the external heat shock, the mechanical heating effects 
are insignificant. Therefore, the governing thermo-mechanical problem becomes 
uncoupled. Moreover, the material properties are assumed to be temperature 
independent in this preliminary study. A numerical example of heterogeneous granitic 
rock under a high intensity heat flux is solved with and without fluid-filled micro-pores 
under axisymmetric conditions in order to demonstrate the method.      

Numerical model 

A brief description of the modelling approach is given here. First, the finite element 
discretized equations of the thermal and mechanical parts of the problem are given. 
Then, the rock fracture model based on the embedded discontinuity finite elements is 
sketched. Finally, the time integration scheme of the uncoupled thermo-mechanical 
problem is outlined.  
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Finite element discretized heat equation and equation of motion 

Modelling of the thermal spallation illustrated in Figure 1 requires solving the 
underlying thermo-mechanical problem. The thermal part is governed by the time-
dependent heat equation, which can be written in the finite element discretized form as 
[7] 

 

                                          
θ θ Q+ = +Cθ K θ f f                (1) 

 
where θ θ Q,  ,   and C K f f  are the capacitance matrix, the conductivity matrix, the external 
force, and the mechanical heating term, respectively, defined by  
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where  is the density, c is the specific heat capacity,  is the temperature, N is the 
temperature interpolation matrix, k is the conductivity, qn is the normal component of 
the heat flux, and B is the gradient of N, and A is the standard finite element assembly 
operator . Generally, the specific heat capacity and conductivity depend on temperature, 
but this dependency is neglected in this study. Moreover, the convection at the 
boundaries of the rock specimen is also ignored as insignificant due to the short heating 
times. Finally, the term Q in (2) expresses the mechanical heat production through 
dissipation and strain rate. This term is ignored as insignificant in comparison to the 
external flux, hence fQ  0 from now on. This assumption makes the thermo-mechanical 
problem uncoupled facilitating its solution significantly [7]. 

The mechanical part of the problem, in the present explicit dynamics approach, is 
governed by the discretized equation of motion: 
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where M is the mass matrix, N is the displacement interpolation matrix, u is the 
displacement vector,  is the stress matrix, fext, fint are the external and internal force 
vectors, respectively, Bu is the kinematic operator matrix. 

 

Embedded discontinuity finite element model for rock fracture 

The behavior of the rock is assumed linear elastic until the tensile strength is reached. 
After reaching the tensile strength, the fracture of rock is modelled with the embedded 
discontinuity concept, which is an element-based enrichment technique. Accordingly, 
upon reaching an elastic limit of a finite element, a discontinuity line (surface in 3D) is 
embedded inside the element. In the present version, the Rankine criterion is used to 
indicate cracking and the discontinuity is oriented orthogonal to the first principal 
direction. This failure criterion is chosen since the mode I fracture is the most common 
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fracture type in rocks irrespective of the loading conditions. A brief summary of the 
model originally presented by Saksala et al. [6] is given here. 

When a displacement discontinuity (crack) is embedded in a CST (constant strain 
triangle) element, the displacement, u, and strain, , fields can be decomposed as  
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where d is the displacement jump vector,  and e

i iN u  are the standard interpolation 
function and displacement vector at node i (summation applies on repeated i), and

d
H is 

the Heaviside function at discontinuity d with normal n. Finally,   is a function that 
restricts the effect of the displacement jump within the corresponding finite element so 
that the essential boundary conditions remain unaffected. It should also be mentioned 
that the gradient of the displacement jump is assumed zero here, i.e. constant mode I 
and II discontinuity is adopted. Equation (4) specifies also how function  is selected 
from among the nodal interpolants. 

A bi-surface, plasticity inspired model was developed in Saksala et al. [6] for 
solving the displacement jump vector and the traction updates, as well as to control the 
softening behavior at the discontinuity. The components of this model are 
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where t and s  are the tension (mode I) and shear (mode II) loading functions, 
respectively, ,  are the internal variable and its rate, m is the crack tangent vector, 

t and s  are elastic limits in tension and shear, respectively, I II,α α are the mode I and 
II crack opening vectors, E is the elasticity tensor, t s,  are the mode I and II opening 
increments, respectively, h is the softening modulus, and s is the constant viscosity 
modulus. The softening slope parameter g is defined by the mode I fracture energy GIc 
by g = t/GIc. Viscosity is included here, in the consistency format by Wang [8], to 
stabilize the computations, not to account for strain-rate effects, which are insignificant 
in the present type of problems.    

The problem defined by model (5), i.e. the traction and internal variables update, can 
be solved with the standard algorithms of multi-surface plasticity [8]. After this, a new 
stress is calculated by 
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tot θ θ: ( ),d  = −  − = σ E ε α ε ε I                (6) 

   
where 

tot θ and ε ε are the total and thermal strain tensor, respectively,  is the thermal 
expansion coefficient,  is the temperature difference, and I is the identity tensor.  

Finally, the method for modelling the pore-fluid is explained. A very rough 
approximation is taken here assuming that the fluid in micro-pores is a material that can 
withstand only compressive volumetric stress, i.e. pressure. Thereby, for the elements 
designated as modelling the pore-fluid the stress-strain relation is  
 

                                                
bulk vol( )K   = − σ I                       (7) 

 
where Kbulk is the elastic bulk modulus of the fluid, and 

vol is the volumetric strain. 
Thus, in this scheme fluid flow of any kind is neglected and possible phase changes are 
ignored. The purpose of this simple model is to test if the thermal expansion of the pore-
fluid enhances the spallation. 
 

Explicit scheme for solving the uncoupled thermo-mechanical problem 

The uncoupled thermo-mechanical problem governing the thermal spallation is solved 
with explicit time marching. The forward Euler method is employed here leading to 
following equation for the new temperature n+1: 
 

                                            1 θ, θ,( )n n n n n nt t+ = − + C θ C K θ f                                    (8) 

 
The mechanical update is performed as follows: 
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Now, the solution procedure is as follows. First, the temperature is solved by Equation 
(8) since the temperature is needed to calculate the stress by Equation (6). Then, if an 
element has no crack and it is not a pore-fluid element, the Rankine criterion is checked 
and if violated, a crack (discontinuity) is embedded to that element and the model (5) is 
solved consequently for the new crack and for an old crack if the loading functions in 
(5) are violated. Note that only one crack with a fixed orientation is allowed per 
element. For a pore-fluid element, the stress is calculated by Equation (7). Finally, the 
mechanical response is advanced by solving (9).  

Numerical simulations 

A problem thermal spallation of rock is simulated here in order to test whether the fluid 
in micro-pores enhance the spallation if granitic rock. Numerical rock is assumed to be 
heterogeneous with three different minerals (Quartz, Feldspar, and Biotite). This is the 
appropriate approach as no real rock can be considered homogeneous at the scale (a disc 
with radius of 15 mm and thickness of 5 mm) considered here. The heterogeneity is 
described as follows. First, the element numbers are assigned with integers from 1 to 3 
corresponding to the percentage of the minerals in rock. For example, if the real rock 
has 33 % of Quartz, then 33 % percent of the elements in the mesh are designated as 
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Quartz. Then, the sets representing different minerals are randomly mapped into the 
mesh resulting in a mesoscopic description of heterogeneity. The material and model 
properties for minerals and the pore-fluid (water) are in Table 1. The homogenized 
values for the minerals, calculated by the rule of mixtures (xmix = fixi, fi being the 
volume fraction of phase i), are also given in Table 1. 
 

Table 1: Material and model parameter for typical minerals found in granitic rocks 
Parameter Quartz Feldspar Biotite Homog Water Equation 
% 33 50 12/17 100 5/0  
 [kg/m3] 2650 2620 3050 2703 1000 (2), (3) 
E [GPa] 80 60 20 59.8 2.15* (5), (6) 
 0.17 0.29 0.20 0.235 - (5), (6) 
t [MPa] 10 8 7 8.49 0 (5) 
s [MPa] 50 50 50 50 0 (5) 
GIc [J/m2] 40 40 28 38 0 (5) 
 [1/K] 1.60E–5 0.75E−5 1.21E−5 1.12E−5 2.07E−4 (6), (7) 
k [W/mK] 4.94 2.34 3.14 3.33 0.6 (2) 
c [J/kgK] 731 730 770 737 4185 (2) 

   *Bulk modulus 
 
The explicit schemes for solving the thermal and mechanical problems (8) and (9) have 
vastly differing time scales and hence the critical time steps. For this reason, mass 
scaling is used for the mechanical problem to speed up the solution in time. Fortunately, 
the present problem turned out to be especially suitable for extreme mass scaling: 
numerical tests revealed that the response remained virtually identical even when the 
density for the mechanical part of the problem was 10000-fold resulting in a critical 
time step of 100 times larger than that with the original density. 

The boundary conditions and the numerical rock are shown in Figure 2. In order to 
test the effect of the pore-fluid, a percentage of the elements in the mesh representing 
Biotite is assigned to pores as indicated in Table 1.     

 

Figure 2. The CST mesh with 2963 elements and boundary conditions a), and the numerical 
rock samples b) (the critical elements representing water are indicated by a red circle). 
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The average element size in the area under the heat shock is about 0.3 mm leading to a 
critical time step of order 1E−8 s. Therefore, the mass-scaled time step is of order 1E−6 
s requiring quite short practical analysis times. Here, a heating time of 0.1 s is set, and 
the intensity of the thermal shock is qn = 3E6 J/m2. The heat shock is spatially and 
temporally constant and the radius of the heated part of the surface is 10 mm. The initial 
condition for the thermal part is the room temperature, i.e. 20 C, which means that 
shallow conditions (close to surface) without any confinement or overburden pressure 
are assumed here. As mentioned above, convection at the rock boundaries is ignored – 
an assumption justified by the short duration of the heating process. First, a simulation 
with the homogenized material properties is carried out in order to illustrate the general 
features of the problem. The results are shown in Figure 3. 

Due to the short heating time, the temperature rises only in a thin ( 1 mm) layer of 
the rock sample (see Figure 3c) while the final temperature at the flux nodes is about 
400 C (Figure 3d). The resulting radial and axial stress distributions plotted in Figure 
3a and b, respectively, show that a 1 mm thick surface layer of rock is in compressive 
stress state in the radial direction. Below this layer, both stress components are tensile in 
nature. These features of the thermal stresses are accordingly reflected in the induced 
crack orientation distribution shown in Figure 3f: The cracks at the compressive zone 
close to the rock surface are parallel to the surface while more vertically oriented cracks 
are attested in the tensile stress zone. The corresponding crack opening magnitudes 
shown in Figure 3e are so mild that no spallation is expected here. Indeed, the 
maximum opening was 5.6E–4 mm in the element in the right upper corner in Figure 
3e. This value corresponds to q = –4.5 MPa (see Equation (5)) so that only about 50 % 
of the tensile strength (8.49 MPa) is exhausted. 

In passing, an anomaly in the stresses in Figure 3b is observed. Namely, the vertical 
stress component displays a checkerboard pattern (i.e. an alternation of the stress from 
compression to tension in adjacent elements) in the layer where the radial stress in 
compressive. This is quite common behavior for the CST element with certain kinds of 
structured meshes in analyses involving incompressible material. However, the material 
behavior here neither is incompressible nor is the mesh structured. Still, this anomaly is 
probably due to the low order kinematics of the CST element. Anyways, further 
elaboration is beyond the scope of this paper.  

Next, the same problem is simulated with heterogeneous rock using the numerical 
rock sample Rock1. The results are shown in Figure 4. 

Due to the heterogeneous rock, the crack orientations are now more random than 
with the homogeneous rock, as can be seen in Figure 4a. Moreover, the final surface 
temperatures vary from 360 to some 490 C (Figure 4b), which has led to a much more 
severe damage in terms of crack opening magnitudes shown in Figure 4c. The crack 
opening at one of the elements close to rock surface at the symmetry axis exceeds 1 
mm, as can be observed in the Figure 4c. Within the present small strain continuum 
modelling context, this can be interpreted as a numerical representation of spallation, 
albeit extremely local one. When the pore-fluid is included, the spallation is predicted to 
start at t = 0.069 s as the two elements representing fluid-filled pores close to the origin 
of the axes (see Rock1 in Figure 2b) cause the surrounding elements to fail violently 
(Figure 4d). It should be noted that these elements do not have cracks. Moreover, the 
thermal expansion coefficient of the pore-fluid (water) is about 20 times larger than that 
of the surrounding rock mineral elements (see Table 1).  

Finally, the simulation is repeated with the numerical rock sample Rock2. The 
results are presented in Figure 5 only for the crack opening magnitudes with and 
without the pore-fluid. It should be kept in mind that the underlying mesh is the same in 
all three simulated cases, only the mineral phases, i.e., the random clusters representing 
different minerals, are different in Rock1 and Rock2. 



107 

 

Figure 3. Simulation results with homogenized material: Radial (a) and vertical (b) stress 

components (tensile stresses are positive), temperature distribution (c), temperature at the flux 

nodes as a function of time (d), crack openings (e), and crack orientations (f) at the end of 

simulation. 

 

Figure 4. Simulation results with numerical rock Rock1: Crack orientations (a), temperature at 
the flux nodes as a function of time (b), crack openings without pore-fluid at the end of 

simulation (c), and crack openings with pore-fluid at t = 0.069 s (d). 
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Figure 5. Simulation results with numerical rock Rock2: Crack openings without pore-fluid at 

the end of simulation (a), and crack openings with pore-fluid at t = 0.043 s (b). 

With the numerical rock sample Rock2, the spallation predicted at the end of the 
simulation is substantially wider than with Rock1, as can be observed in Figure 5a. 
Indeed, a spall with thickness varying from 0.3 to 1 mm and width of 7 mm is predicted 
without the pore-fluid. With the pore-fluid, again, a violent local spallation is predicted 
to take place at t = 0.043 s in addition to the ejection of the surface elements (the critical 
element where this behavior is originated is circled in Figure 2b).   

Conclusions 

A numerical method to model pore-fluid enhanced thermal spallation of rock based on 
embedded discontinuity finite elements was presented. The mechanical heating effects 
were ignored as insignificant compared to the external heat shock. Thereby, the finite 
element discretized uncoupled thermo-mechanical problem was solved with explicit 
time marching using the mass-scaling for the mechanical part to increase the critical 
time step. The pore-fluid was modelled as a material that can withstand only negative 
volumetric stresses. In the numerical simulations, the effect of pore-fluid on the 
spallation was tested. The simulations confirm the hypothesis that the presence of the 
pore-fluid enhances the spallation of granitic rock.  

As no real rock can be plausibly considered homogeneous at the scale of 
consideration of present simulations, heterogeneity of rock was described as random 
clusters of finite elements representing the constituent minerals. The two considered 
random rock samples resulted, with the present setup, in two different, representative 
kinds of behaviour; minimal to no spallation, and critical spallation. These simulations 
thus demonstrate that mesostructural details may have, at least locally, a substantial 
effect on the resulting failure behaviour of rock under intensive thermal loading.   
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