Rakenteiden Mekaniikka (Journal of Structural Mechanics) vol. 53, nro 2, 2020, s. 110–124 http://rakenteidenmekaniikka.journal.fi/index https://doi.org/10.23998/rm.77296 © 2020 kirjoittajat Vapaasti saatavilla CC BY 4.0 -lisenssin mukaisesti

VERTAISARVIOITU KOLLEGIALT GRANSKAD PEER-REVIEWED www.tsv.fi/tunnus

Griolin teoreema: rotaatio, joka minimoi muodonmuutoksen

Martti Mikkola

Tiivistelmä Artikkelissa on tarkasteltu Griolin teoreemaa, jonka mukaan deformaatiogradientin mukainen rotaatiotensori minimoi tapahtuvan muodonmuutoksen. Teoreema on esitetty sekä pienten että suurten siirtymien tapauksessa. Teoreemaa on demonstroitu muutamien yksinkertaisten esimerkkien avulla.

Avainsanat: Griolin teoreema, suuret siirtymät, rotaatiot

Vastaanotettu: 17.12.2018. Hyväksytty: 7.1.2020. Julkaistu verkossa: 30.3.2020.

emeritusprofessori Tapio Salmen muistolle

Johdanto

Giuseppe Grioli osoitti vuonna 1940, että deformoituvan kappaleen deformaatiogradientin polaarihajoitelman mukainen rotaatio minimoi syntyvän muodonmuutoksen tietyn normin mukaisesti [1], [2]. Elegantin todistuksen ovat esittäneet C. Truesdell ja R.A. Toupin [3]. Asiaa ovat myöhemmin tarkastelleet myös L.C. Martins ja P. Podio-Guidugli [4], M. Mikkola [5] ja P. Neff, J. Lankeit ja A. Madeo [6]. Lineaarisen teorian puitteissa asian ovat esittäneet L.D. Landau ja E.M. Lifshitz [7] sekä H. Parland [8], joka sovelsi sitä opetusmonisteessa 'Rakenteiden vääntö'. Griolin teoreemaa on viime aikoina sovellettu mm. materiaalien miokrorakenteen tutkimuksessa, A. Fischle ja P. Neff [9]. Tämän artikkelin tarkoituksena on palauttaa mieliin Griolin teoreema deformoituvan kappaleen suurten siirtymien tapauksessa ja demonstroida sitä muutamien esimerkkien avulla.

Merkinnät

Tarkastellaan kontinuumikappaletta, jonka sijainti referoidaan suorakulmaiseen karteesiseen koordinaatistoon (Kuva 1). Koordinaattiakselien suuntaiset yksikkökantavektorit ovat $\{e_k\}$. Vektoreita merkitään vinoilla lihavoiduilla kirjaimilla ja niiden dyadituloa $\boldsymbol{x} \otimes \boldsymbol{y}$. Toisen kertaluvun tensoreita merkitään pystyillä lihavoiduilla kirjaimilla $\mathbf{T} = T_{kl} \boldsymbol{e}_k \otimes \boldsymbol{e}_l$. Einsteinin summeeraussääntö tulossa esiintyvän kahden saman indeksin suhteen pätee. Kahden tensorin kontraktio on $\mathbf{T} : \mathbf{S} = \text{tr}(\mathbf{S}^{T}\mathbf{T}) = \text{tr}(\mathbf{S}\mathbf{T}^{T})$. Ainepisteen

Kuva 1. Deformoituva kappale koordinaatistoineen alkutilassa C ja lopputilassa C'.

paikkavektori on alkutilassa $\mathbf{P} = X_K \mathbf{e}_K$ ja lopputilassa $\mathbf{p} = x_k \mathbf{e}_k$. Paikkavektorit referoidaan samaan koordinaatistoon, mutta selvyyden vuoksi alkutilaan viitataan isoilla kirjaimilla ja deformoituneeseen tilaan pienillä. Esitystapa noudattaa melko tarkasti G.A. Holzapfelin kirjaa [10] ja osittain myös Başarin ja Weichertin teosta [11].

Deformaatiogradientti ja polaarihajoitelma

Ainepisteiden liike kuvataan yhtälöllä

$$\boldsymbol{x} = x_k(X_1, X_2, X_3, t) \boldsymbol{e}_k. \tag{1}$$

Jatkossa tarkastellaan tiettyä ajanhetkeä, joten aik
atvoidaan jättää pois. Deformaatio-gradientti on

$$\mathbf{F} = \frac{\partial x_k}{\partial X_M} \boldsymbol{e}_k \otimes \boldsymbol{e}_M. \tag{2}$$

Muodonmuutostensori ${\bf C}$ on Cauchyn-Greenin oikean
puoleinen muodonmuutostensori

$$\mathbf{C} = \mathbf{F}^{\mathrm{T}} \mathbf{F} = \frac{\partial x_k}{\partial X_M} \frac{\partial x_k}{\partial X_N} \boldsymbol{e}_M \otimes \boldsymbol{e}_N.$$
(3)

Tunnetusti deformaatiogradientille pätee polaarihajoitelma, jonka mukaan se on kahden tensorin tulo

$$\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R},\tag{4}$$

Rotaatiotensori ${\bf R}$ voidaan esittää muodossa

$$\mathbf{R} = R_{kM} \boldsymbol{e}_k \otimes \boldsymbol{e}_M, \quad \mathbf{R}^{\mathrm{T}} = R_{mK} \boldsymbol{e}_K \otimes \boldsymbol{e}_m.$$
(5)

Rotaatiotensori toteuttaa yhtälöt

$$\mathbf{R}^{\mathsf{T}}\mathbf{R} = R_{mK}\delta_{mk}R_{kN}\boldsymbol{e}_{K}\otimes\boldsymbol{e}_{N} = R_{mK}R_{mN}\boldsymbol{e}_{K}\otimes\boldsymbol{e}_{N} = \delta_{KN}\boldsymbol{e}_{K}\otimes\boldsymbol{e}_{N} = \mathbf{I},$$

$$\mathbf{R}\mathbf{R}^{\mathrm{T}} = R_{kM}\delta_{MK}R_{mK}\boldsymbol{e}_{k}\otimes\boldsymbol{e}_{m} = R_{kM}R_{mM}\boldsymbol{e}_{k}\otimes\boldsymbol{e}_{m} = \delta_{km}\boldsymbol{e}_{k}\otimes\boldsymbol{e}_{m} = \mathbf{i}$$

Rotaatiotensorille pätee siis $\mathbf{R}^{\mathrm{T}} = \mathbf{R}^{-1}$. Tensorit U ja V ovat symmetriset venytystensorit

$$\mathbf{U} = U_{KL} \boldsymbol{e}_K \otimes \boldsymbol{e}_L, \quad \mathbf{V} = V_{kl} \boldsymbol{e}_k \otimes \boldsymbol{e}_l.$$
(6)

Deformaatiotensori voidaan jakaa myös additiivisesti

$$\mathbf{F} = \mathbf{I} + \mathbf{E} + \mathbf{W},\tag{7}$$

jossa

$$\mathbf{E} = E_{KL} \boldsymbol{e}_K \otimes \boldsymbol{e}_L, E_{KL} = \frac{1}{2} (u_{K,L} + u_{L,K}), \mathbf{W} = W_{KL} \boldsymbol{e}_K \otimes \boldsymbol{e}_L, W_{KL} = \frac{1}{2} (u_{K,L} - u_{L,K}).$$
(8)

 $u_K = u_k$ on siirtymäkomponentti $x_k - X_k$. Merkintä $u_{K,L}$ on osittaisderivaatta $\partial u_K / \partial X_L$.

Lineaarinen tapaus, pienet siirtymät

Tarkastellaan aluksi rotaatiota, joka minimoi muodonmuutoksen, pienten siirtymien tapauksessa [7], [8]. Kappaleen siirtymätila lausutaan yhtälöillä

$$x_k = X_k + u_k(X_k), k = 1, 2, 3,$$
(9)

joissa X_k ja x_k määrittävät ainepisteen paikan alku- ja deformoituneessa tilassa. Tästä eteenpäin käytetään alaindekseinä vain pieniä kirjaimia. Jäykän kappaleen siirtymätila voidaan esittää muodossa

$$x_{k,rigid} = c_k + e_{kij}\omega_i X_j, i, j, k = 1, 2, 3, \text{ tai } \boldsymbol{x}_{rigid} = \boldsymbol{c} + \boldsymbol{\omega} \times \boldsymbol{X} \text{ tai } \boldsymbol{x}_{rigid} = \boldsymbol{c} + \boldsymbol{\Omega} \boldsymbol{X},$$
(10)

jossa c
 esittää translaatiota ja ω rotaatiovektoria. Rotaatio
tensorin Ω komponent
timatriisi on

$$\Omega = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}.$$
 (11)

Permutaatiosymboli e_{ijk} saa arvon 1 parillisille permutaatioille 123,231,312 ja arvon -1 parittomille 132,321,213 ja on muutoin 0.

Valitaan alkutilan ainepiste P ja sen ympäriltä ρ -säteinen pallo. Pisteen P ja sen lähellä olevan pisteen Q, joka myös kuuluu palloon, siirtymät ovat

$$u_k^P = u_k(X_1^P, X_2^P, X_3^P) \text{ ja } u_k^Q = u_k(X_1^P + \mathrm{d}X_1, X_2^P + \mathrm{d}X_2, X_3^P + \mathrm{d}X_3) = u_k^P + (\frac{\partial u_k}{\partial X_n})^P \mathrm{d}X_n.$$

Otaksutaan, että pallon säde ρ on niin pieni, että paikallisesti siirtymätilaa voidaan pitää lineaarisena. Silloin muodonmuutostila on homogeeninen. Tällöin yllä esitetyn siirtymätilan ja samasta pisteestä P lähtevän jäykän kappaleen siirtymien erotus on

$$u_k^P + \left(\frac{\partial u_k}{\partial X_n}\right)^P (X_n - X_n^P) - c_k - e_{kij}\omega_i (X_j - X_j^P) , k = 1, 2, 3.$$
(12)

Siirtymäerotusten neliöiden summa on

$$d(c_k, \omega_i) = \sum_{k=1}^{3} \left[u_k(X_n^P) + \frac{\partial u_k}{\partial X_n} (X_n^P) (X_n - X_n^P) - c_k - e_{kij} \omega_i (X_j - X_j^P) \right]^2.$$

Integroidaan tämä lauseke ρ -säteisen pallon tilavuuden yli. Saatu lauseke on kolmen translaatiokomponentin ja kolmen rotaatiokomponentin funktio, jonka minimi määritetään tunnettuun tapaan derivoimalla näiden suhteen. Käytetään pallokoordinaatteja

$$X_1 = r \sin \theta \cos \varphi, \quad X_2 = r \sin \theta \sin \varphi, \quad X_3 = r \cos \theta.$$

Integroinnin jälkeen saadaan

$$D = \iiint d(c_k, \omega_i) dV = \frac{4\pi\rho^3}{3} \sum_{k=1}^3 [u_k(X_n^P) - c_k]^2 + \frac{4\pi\rho^5}{15} \sum_{k,n=1}^3 \left[\frac{\partial u_k}{\partial X_n} (X_n^P) - e_{kin} \omega_i \right]^2.$$
(13)

Yksinkertaisten laskutoimitusten jälkeen saadaan odotettavissa oleva tulos

$$c_k = u_k(X_k^P), \ k = 1,2,3,$$
(14)

$$\omega_1 = \frac{1}{2} \left(\frac{\partial u_3}{\partial X_2} - \frac{\partial u_2}{\partial X_3} \right), \\ \omega_2 = \frac{1}{2} \left(\frac{\partial u_1}{\partial X_3} - \frac{\partial u_3}{\partial X_1} \right), \\ \omega_3 = \frac{1}{2} \left(\frac{\partial u_2}{\partial X_1} - \frac{\partial u_1}{\partial X_2} \right).$$
(15)

Kun nämä sijoitetaan D:n lausekkeeseen (13), nähdään, että minimipisteessä on

$$D = \frac{4\pi\rho^5}{15} \sum_{k,n=1}^3 \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial X_k} + \frac{\partial u_k}{\partial X_i} \right) \right]^2.$$
(16)

Hakasuluissa olevat termit ovat juuri kaavan (8) mukaiset venymien lausekkeet pienten siirtymien tapauksessa

$$E_{ik} = \frac{1}{2} \left(\frac{\partial u_i}{\partial X_k} + \frac{\partial u_k}{\partial X_i} \right), \ i,k = 1,2,3 \ . \tag{17}$$

Kaikki osittaisderivaatat on tietenkin määritetty pisteessä P. Jäykän kappaleen siirtymät, jotka minimoivat D:n lausekkeen, tuottavat siis venymien lausekkeet.

Parland on opetusmonisteessaan 'Rakenteiden vääntö' [8] soveltanut tätä menettelyä moniin palkkiteorian tapauksiin.

Suuret siirtymät, Griolin teoreema

Suurten siirtymien tapauksessa vaikeudet syntyvät siitä, että rotaation kuvaus on monimutkaisempi. Lähtötilanne on kuten pienten siirtymien tapauksessa: alkutilassa valitaan ainepiste P ja sen ympäriltä sopiva alue, esim. ρ -säteinen pallo, johon kuuluu myös läheinen piste Q. Deformaation tapahtuessa piste P siirtyy pisteeseen P' ja piste Q pisteeseen Q' (ks. Kuva 1). Deformaatiogradientin arvo määritetään pisteessä P, jolloin siirtymätilaa voidaan pitää lineaarisena P:n lähellä ja muodonmuutostilaa homogeenisena

$$x_{k}^{Q} = x_{k}(X_{1}^{P} + \mathrm{d}X_{1}, X_{2}^{P} + \mathrm{d}X_{2}, X_{3}^{P} + \mathrm{d}X_{3}) = x_{k}^{P} + (\frac{\partial x_{k}}{\partial X_{n}})^{P} \mathrm{d}X_{n},$$
(18)

tai vektorimuodossa

$$\boldsymbol{x}^{Q'} = \boldsymbol{x}(\boldsymbol{X}^{Q}) = \boldsymbol{x}(\boldsymbol{X}^{P} + \mathrm{d}\boldsymbol{X}) = \boldsymbol{x}(\boldsymbol{X}^{P}) + \mathbf{F}(\boldsymbol{X}^{P})\mathrm{d}\boldsymbol{X} = \boldsymbol{X}^{P} + \boldsymbol{u}(\boldsymbol{X}^{P}) + \mathbf{F}(\boldsymbol{X}^{P})\mathrm{d}\boldsymbol{X}.$$
 (19)

Deformaatiogradientti on kaavan (4) mukaan $\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R}$, jossa \mathbf{R} on deformaatioon liittyvä jäykän kappaleen rotaatio. Jäykän kappaleen translaatio, joka siirtää pisteen Q pisteeseen Q", on

$$u_{k,rigid} = c_k + Q_{kn} dX_n$$
, vektorimuodossa $\boldsymbol{u}_{rigid} = \boldsymbol{c} + \mathbf{Q} d\boldsymbol{X}$, (20)

jossa ${\boldsymbol{c}}$ on jokin translaatio P-pisteestä lähtien ja ${\bf Q}$ on rotaatiotensori kuten R. Silloin on

$$\boldsymbol{x}^{Q^{\prime\prime}} = \boldsymbol{X}^{P} + \boldsymbol{c} + \mathbf{Q} \mathrm{d} \boldsymbol{X}.$$
⁽²¹⁾

Pisteiden Q' ja Q" välisen etäisyyden neliö on

$$d = |\boldsymbol{x}^{Q'} - \boldsymbol{x}^{Q''}|^2 = |\boldsymbol{u}(\boldsymbol{X}^P) + \mathbf{F}(\boldsymbol{X}^P) \mathrm{d}\boldsymbol{X} - \boldsymbol{c} - \mathbf{Q}\mathrm{d}\boldsymbol{X}|^2.$$
(22)

Griolin teoreema lausuu, että pisteiden Q' ja Q" välisen etäisyyden neliö laskettuna pisteessä P ja integroituna ρ -säteisen pallon yli, saa minimiarvonsa, kun jäykän kappaleen siirtymä on pisteen P translaatio $u(X^P)$ ja rotaatio on deformaatiogradientin mukainen **R**.

Siirtymien erotuksen neliö integroidaan ρ -säteisen pallon yli ottaen huomioon, että muodonmuutostila on homogeeninen pallon sisällä

$$D = \iiint |\boldsymbol{x}^{Q'} - \boldsymbol{x}^{Q''}|^2 dV = \iiint |\boldsymbol{u}(\boldsymbol{X}^P) + \mathbf{F}(\boldsymbol{X}^P)(\boldsymbol{X} - \boldsymbol{X}^P) - \boldsymbol{c} - \mathbf{Q}(\boldsymbol{X} - \boldsymbol{X}^P)|^2 dV.$$
(23)

Käytetään pallokoordinaatteja kuten aikaisemmin pienten siirtymien tapauksessa. Saadaan lauseke

$$D = \frac{4\pi\rho^3}{3} |\boldsymbol{u}(\boldsymbol{X}^P) - \boldsymbol{c}|^2 + \frac{4\pi\rho^5}{15} [\mathbf{F}(\boldsymbol{X}^P) - \mathbf{Q}] : [\mathbf{F}(\boldsymbol{X}^P) - \mathbf{Q}],$$
(24)

jonka minimi $\boldsymbol{c}:$ n ja $\mathbf{Q}:$ n avulla määritetään. Minimin määrittämiseksi varioidaan D:n lauseke, jolloin saadaan

$$\delta D = -\frac{8\pi\rho^3}{3} [\boldsymbol{u}(\boldsymbol{X}^P) - \boldsymbol{c}] \cdot \delta \boldsymbol{c} - \frac{8\pi\rho^5}{15} [\mathbf{F}(\boldsymbol{X}^P) - \mathbf{Q}] : \delta \mathbf{Q}.$$
 (25)

Oikean puolen kummankin termin tulee hävitä, jotta D:llä olisi minimi. Välittömästi saadaan tulos

$$\boldsymbol{c} = \boldsymbol{u}(\boldsymbol{X}^P). \tag{26}$$

Minimin määrittäminen rotaation **Q** suhteen on hankalampaa. Aluksi todetaan, että $\delta \mathbf{Q} = \delta \mathbf{W} \mathbf{Q}$, jossa $\delta \mathbf{W}$ on antisymmetrinen tensori ts. $\delta \mathbf{W}^{\mathrm{T}} = -\delta \mathbf{W}$. Tällöin voidaan kirjoittaa

$$[\mathbf{F}(\mathbf{X}^{P}) - \mathbf{Q}] : \delta \mathbf{Q} = \operatorname{tr}(\mathbf{F}\mathbf{Q}^{\mathrm{T}}\delta\mathbf{W}^{\mathrm{T}}) - \operatorname{tr}(\mathbf{Q}\mathbf{Q}^{\mathrm{T}}\delta\mathbf{W}^{\mathrm{T}}) = \operatorname{tr}(\mathbf{F}\mathbf{Q}^{\mathrm{T}}\delta\mathbf{W}^{\mathrm{T}}) = \mathbf{F}\mathbf{Q}^{\mathrm{T}} : \delta \mathbf{W}.$$
(27)

Koska $\delta \mathbf{W}$ on antisymmetrinen, \mathbf{FQ}^{T} :n on oltava symmetrinen, jotta tämä termi olisi nolla. Polaarihajoitelman avulla saadaan

$$\mathbf{F}\mathbf{Q}^{\mathrm{T}} = \mathbf{Q}\mathbf{F}^{\mathrm{T}} = \mathbf{R}\mathbf{U}\mathbf{Q}^{\mathrm{T}} = \mathbf{Q}\mathbf{U}\mathbf{R}^{\mathrm{T}},$$

ja edelleen

$$\mathbf{Q}^{\mathrm{T}}\mathbf{R}\mathbf{U}\mathbf{Q}^{\mathrm{T}}\mathbf{R} = \mathbf{U}, \quad \forall \mathbf{U} \text{ symmetrinen.}$$

Mutta tästä seuraa, että on oltava $\mathbf{Q} = \mathbf{R}$. Siis polaarihajoitelman mukainen rotaatio minimoi D:n lausekkeen.

Samaan tulokseen päästään toisella tavalla, jonka ovat esittäneet Martins ja Podio-Guidugli [4]. Lähdetään liikkeelle lausekkeesta

$$[\mathbf{F}(\mathbf{X}^{P}) - \mathbf{Q}] : [\mathbf{F}(\mathbf{X}^{P}) - \mathbf{Q}] = \mathbf{F} : \mathbf{F} - 2\mathbf{F} : \mathbf{Q} + \mathbf{Q} : \mathbf{Q}.$$
 (28)

Kuva 2. Yksinkertainen leikkaus.

Koska $\mathbf{Q} : \mathbf{Q} = n$, jossa n on yhtä kuin tarkastellun probleeman dimensio, esim. 2 tai 3, yllä olevan lausekkeen minimi saadaan maksimoimalla termi $\mathbf{F} : \mathbf{Q}$. Kehitellään tätä termiä

$$\mathbf{F} : \mathbf{Q} = \operatorname{tr}(\mathbf{F}\mathbf{Q}^{\mathrm{T}}) = \operatorname{tr}(\mathbf{V}\mathbf{R}\mathbf{Q}^{\mathrm{T}}) = \mathbf{V} : \mathbf{Q}\mathbf{R}^{\mathrm{T}}.$$
(29)

Tensori $\mathbf{Q}\mathbf{R}^{\mathrm{T}}=\mathbf{H}$ on ortogonaalinen. Osoitetaan, että

$$\mathbf{V} : \mathbf{H} \le \mathbf{V} : \mathbf{I}, \quad \forall \mathbf{H} \text{ ortogonaalinen eli } \forall \mathbf{H} \in \text{Orth}^+, \tag{30}$$

josta sitten seuraa maksimin tapauksessa $\mathbf{H}=\mathbf{Q}\mathbf{R}^{\mathrm{T}}=\mathbf{I}$ ja edelleen $\mathbf{Q}=\mathbf{R}.$ Kirjoitetaan aluksi

$$\mathbf{V}: (\mathbf{H} - \mathbf{I}) = -\frac{1}{2}\mathbf{V}: (\mathbf{H} - \mathbf{I})(\mathbf{H} - \mathbf{I})^{\mathrm{T}} = -\frac{1}{2}(\mathbf{H} - \mathbf{I})^{\mathrm{T}}\mathbf{V}(\mathbf{H} - \mathbf{I}): \mathbf{I}.$$
 (31)

Koska **V** on positiivinen ts. $\boldsymbol{x} \cdot \boldsymbol{V}\boldsymbol{x} > 0$, $\forall \boldsymbol{x} \neq 0$, niin myös $(\mathbf{H} - \mathbf{I})^{\mathrm{T}}\mathbf{V}(\mathbf{H} - \mathbf{I})$ on positiivinen. Tästä voidaan päättää, että edellä esitetty tulos pätee eli $\mathbf{Q} = \mathbf{R}$.

Muodonmuutos, joka vastaa minimoivaa jäykän kappaleen siirtymää, on Biot'n venymä U - I. Lausekkeesta (28) seuraa helposti minimin arvoksi

$$\min_{\mathbf{Q} \in \operatorname{Orth}^+} [\mathbf{F} - \mathbf{Q}] : [\mathbf{F} - \mathbf{Q}] = \mathbf{R}[\mathbf{U} - \mathbf{I}] : \mathbf{R}[\mathbf{U} - \mathbf{I}] = [\mathbf{U} - \mathbf{I}] : [\mathbf{U} - \mathbf{I}].$$
(32)

Esimerkki 1. Yksinkertainen leikkaus

Kysymyksessä on tasomuodonmuutos, jossa siirtymätilaa kuvaavat yhtälöt

$$x_1 = X_1 + kX_2, \quad x_2 = X_2, \quad x_3 = X_3.$$

Deformaatiogradientin komponenttimatriisi on silloin

$$\mathbf{F} = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Tasomuodonmuutoksessa rotaatiovektori on $\boldsymbol{\theta} = \boldsymbol{\theta} \boldsymbol{e}_3$ eli kohtisuorassa $X_1 X_2$ -tasoa vastaan. Rotaatiotensorin komponenttimatriisi on

$$Q = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix},$$
(33)

jossa θ on kiertymäkulma. D:n lauseke integroidaan
 ρ -säteisen ympyrän yli käyttäen napakoordinaattej
a $X_1=r\cos\varphi$, $X_2=r\sin\varphi$. Tulokseksi saadaan

$$D = \pi \rho^2 [(kX_2^P - c_1)^2 + c_2^2] + \frac{\pi \rho^4}{4} [2(1 - \cos\theta)^2 + (k + \sin\theta)^2 + \sin^2\theta].$$

D:n minimoimiseksi derivoidaan c_1 - ja c_2 -termien sekä θ :n suhteen ja asetetaan derivaatat nolliksi. Tulokseksi saadaan $c_1=kX_2^P$, $c_2=0$ ja tan $\theta=-k/2$. Biot'n venymämatriisiksi saadaan

U - I = R^T(F - R) =
$$\begin{bmatrix} \cos \theta - 1 & -\sin \theta & 0 \\ -\sin \theta & (1 + \sin^2 \theta) / \cos \theta - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
 (34)

Esimerkki 2. Tasomuodonmuutos

Siirtymätilaa kuvaavat yhtälöt

$$x_1 = X_1 + u_1(X_1, X_2), \quad x_2 = X_2 + u_2(X_1, X_2), \quad x_3 = X_3.$$

Deformaatiogradientin \mathbf{F} komponenttimatriisi \mathbf{F} voidaan jakaa osiin seuraavasti

$$\begin{split} \mathbf{F} &= \mathbf{I} + \mathbf{E} + \mathbf{W} = \begin{bmatrix} 1 + u_{1,1} & u_{1,2} & 0 \\ u_{2,1} & 1 + u_{2,2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} u_{1,1} & (u_{1,2} + u_{2,1})/2 & 0 \\ (u_{2,1} + u_{1,2})/2 & u_{2,2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &+ \begin{bmatrix} 0 & (u_{1,2} - u_{2,1})/2 & 0 \\ (u_{2,1} - u_{1,2})/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \end{split}$$

Edellä on käytetty merkintää

$$u_{i,k} = \frac{\partial u_i}{\partial X_k}$$

Deformation tapahduttua pisteen Q' sijainnin antaa vektori

$$\boldsymbol{x}^{Q'} = \boldsymbol{X}^{\boldsymbol{P}} + \boldsymbol{u}^{\boldsymbol{P}} + \mathbf{F}(\boldsymbol{X}^{\boldsymbol{P}})(\boldsymbol{X} - \boldsymbol{X}^{\boldsymbol{P}}).$$

Jäykän kappaleen siirtymä antaa koordinaatit

$$\boldsymbol{x}^{Q^{\prime\prime}} = \boldsymbol{X}^{\boldsymbol{P}} + \boldsymbol{c} + \mathbf{Q}(\boldsymbol{X} - \boldsymbol{X}^{\boldsymbol{P}}).$$

Muodonmuutostila on homogeeninen ρ -säteisen ympyrän sisällä, koska **u**:n osittaisderivaatat on määritetty ympyrän keskipisteessä P. Integroidaan erotusten $x_1^{Q'} - x_1^{Q''}$ ja $x_2^{Q'} - x_2^{Q''}$ neliöiden summa ρ -säteisen ympyrän yli, jolloin saadaan lauseke

$$D = \pi \rho^2 [(u_1(X_1^P, X_2^P) - c_1)^2 + (u_2(X_1^P, X_2^P) - c_2)^2] + \frac{\pi \rho^4}{4} [(1 + u_{1,1} - \cos\theta)^2 + (u_{1,2} + \sin\theta)^2 + (u_{2,1} - \sin\theta)^2 + (1 + u_{2,2} - \cos\theta)^2].$$

D:n minimin määrittämiseksi derivoidaan c-termien ja rotaatiokulman θ suhteen ja asetetaan derivaatat nolliksi, jolloin saadaan tulokset

$$c_1 = u_1(X_1^P, X_2^P)$$
, $c_2 = u_2(X_1^P, X_2^P)$, $\tan \theta = \frac{W_{21}}{1 + (E_{11} + E_{22})/2}$. (35)

Rotaatio θ on sama kuin Cauchyn keskimääräinen rotaatio, ks. [12]. Venytystensorin U komponenttien lausekkeet määritettyinä yhtälöstä U = R^TF ovat varsin monimutkaiset

$$U_{11} = \frac{1}{\sqrt{[1 + (E_{11} + E_{22})/2]^2 + W_{21}^2}} [(1 + E_{11})(1 + (E_{11} + E_{22})/2) + W_{21}u_{2,1}], \quad (36)$$

$$U_{12} = \frac{1}{\sqrt{\left[1 + (E_{11} + E_{22})/2\right]^2 + W_{21}^2}} [E_{12} + E_{11}u_{1,2}/2 + E_{22}u_{2,1}/2],$$
(37)

$$U_{21} = \frac{1}{\sqrt{[1 + (E_{11} + E_{22})/2]^2 + W_{21}^2}} [E_{21} + E_{11}u_{1,2}/2 + E_{22}u_{2,1}/2],$$
(38)

$$U_{22} = \frac{1}{\sqrt{[1 + (E_{11} + E_{22})/2]^2 + W_{21}^2}} [(1 + E_{22})(1 + (E_{11} + E_{22})/2) + W_{12}u_{1,2}].$$
 (39)

Nähdään kuitenkin helposti, että yksinkertaisen leikkauksen tapauksessa nämä antavat kaavoja (34) vastaavan tuloksen ja että linearisoidut lausekkeet (toisen kertaluvun ja korkeammanasteiset termit jätetään huomioonottamatta) ovat lineaarisen teorian mukaiset

$$U_{11} = 1 + E_{11}, \quad U_{12} = E_{12}, \quad U_{21} = E_{21}, \quad U_{22} = 1 + E_{22}.$$

Esimerkki 3. Sauva kolmessa dimensiossa

Sauvan pituus on L ja poikkipinta suorakaide A = bh. Alkutilassa sauvan akseli yhtyy X_1 -akseliin. Sauvan keskipiste on origossa. Sauvan akselin siirtymät ovat

$$u_{1} = u_{1A}\left(\frac{1}{2} - \frac{X_{1}}{L}\right) + u_{1B}\left(\frac{1}{2} + \frac{X_{1}}{L}\right),$$

$$u_{2} = u_{2A}\left(\frac{1}{2} - \frac{X_{1}}{L}\right) + u_{2B}\left(\frac{1}{2} + \frac{X_{1}}{L}\right),$$

$$u_{3} = u_{3A}\left(\frac{1}{2} - \frac{X_{1}}{L}\right) + u_{3B}\left(\frac{1}{2} + \frac{X_{1}}{L}\right).$$

Termit u_{iB} ja u_{iA} , i = 1, 2, 3 ovat sauvan päätepisteiden siirtymät.

Deformaatiogradientin lauseke määritetään sauvan akselin kohdalla. Sen komponenttimatriisi on

$$\mathbf{F} = \begin{bmatrix} 1 + \Delta \tilde{u}_1 & R_{12} & R_{13} \\ \Delta \tilde{u}_2 & R_{22} & R_{23} \\ \Delta \tilde{u}_3 & R_{32} & R_{33} \end{bmatrix},$$

jossa on käytetty lyhenteitä

$$\Delta \tilde{u}_i = (u_{iB} - u_{iA})/L$$
, $i = 1, 2, 3$.

Deformaatiogradientin matriisissa esiintyy rotaatiomatriisin termejä, koska X_{2} - ja X_{3} akselien suunnissa tapahtuu vain jäykän kappaleen siirtymiä. Käytetään jäykän kappaleen liikkeen rotaatiotensorille esitysmuotoa

$$\mathbf{Q} = \mathbf{I} + \sin\theta \mathbf{N} + (1 - \cos\theta)\mathbf{N}^2, \tag{40}$$

Kuva 3. Sauva kolmessa dimensiossa.

jossa tensorin $\mathbf{N} = \boldsymbol{n} \times \mathbf{I}$ matriisi on

$$\mathbf{N} = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix}.$$

Yksikkövektori \boldsymbol{n} on rotaatiovektorin suuntainen.

D:n kaavasta (23) saadaan

$$\delta D = -2 \iiint \{ [\boldsymbol{u}(\boldsymbol{X}^{P}) - \boldsymbol{c}] \cdot \delta \boldsymbol{c} + \delta \boldsymbol{c} \cdot [\mathbf{F}(\boldsymbol{X}^{P}) - \mathbf{Q}] (\boldsymbol{X} - \boldsymbol{X}^{P}) + [\boldsymbol{u}(\boldsymbol{X}^{P}) - \boldsymbol{c}] \cdot \delta \mathbf{Q} (\boldsymbol{X} - \boldsymbol{X}^{P}) + (\boldsymbol{X} - \boldsymbol{X}^{P}) \cdot [\mathbf{F}(\boldsymbol{X}^{P})^{\mathrm{T}} \delta \mathbf{Q}] (\boldsymbol{X} - \boldsymbol{X}^{P}) \} \, \mathrm{d}V. \quad (41)$$

Rotaatiotensorin variaatio muodostuu kahdesta osasta

$$\delta \mathbf{Q} = \delta \mathbf{Q}_{\theta} + \delta \mathbf{Q}_{\boldsymbol{\eta}}. \tag{42}$$

Kiertymäkulman muutoksesta aiheutuva osa on

$$\delta \mathbf{Q}_{\theta} = [\cos \theta \mathbf{N} + \sin \theta \mathbf{N}^2] \delta \theta = [\cos \theta (\boldsymbol{n} \times \mathbf{I}) + \sin \theta (\boldsymbol{n} \otimes \boldsymbol{n} - \mathbf{I})] \delta \theta.$$
(43)

Yksikkövektorin \boldsymbol{n} muutoksesta aiheutuu osa

$$\delta \mathbf{Q}_{\mathbf{n}} = \sin \theta \delta \mathbf{N} + (1 - \cos \theta) (\delta \mathbf{N} \mathbf{N} + \mathbf{N} \delta \mathbf{N}) =$$

= $\sin \theta (\delta \mathbf{n} \times \mathbf{I}) + (1 - \cos \theta) (\mathbf{n} \otimes \delta \mathbf{n} + \delta \mathbf{n} \otimes \mathbf{n}).$ (44)

Määritetään seuraavaksi tensorit $\delta \mathbf{Q}_{\theta} \mathbf{Q}^{\mathrm{T}}$ ja $\delta \mathbf{Q}_{\boldsymbol{n}} \mathbf{Q}^{\mathrm{T}}$. Saadaan

$$\delta \mathbf{Q}_{\theta} \mathbf{Q}^{\mathrm{T}} = \mathbf{N} \delta \theta = (\mathbf{n} \times \mathbf{I}) \delta \theta, \tag{45}$$

$$\delta \mathbf{Q}_{\boldsymbol{n}} \mathbf{Q}^{\mathrm{T}} = \sin \theta \delta \mathbf{N} + (1 - \cos \theta) (\mathbf{N} \delta \mathbf{N} - \delta \mathbf{N} \mathbf{N}) =$$

= $\sin \theta (\delta \boldsymbol{n} \times \mathbf{I}) + (1 - \cos \theta) (\delta \boldsymbol{n} \otimes \boldsymbol{n} - \boldsymbol{n} \otimes \delta \boldsymbol{n}).$ (46)

 $\delta \mathbf{Q}:$ lle saadaan nyt lauseke

$$\delta \mathbf{Q} = (\delta \mathbf{Q}_{\theta} \mathbf{Q}^{\mathrm{T}} + \delta \mathbf{Q}_{\boldsymbol{n}} \mathbf{Q}^{\mathrm{T}}) \mathbf{Q} =$$

= { (\mathbf{n} \times \mathbf{I}) \delta\theta + \sin \theta (\delta \mathbf{n} \times \mathbf{I}) + (1 - \cos \theta) (\delta \mathbf{n} \otimes \mathbf{n} - \mathbf{n} \otimes \delta \mathbf{n}) \} \mathbf{Q}. (47)

Sijoitetaan $\delta \mathbf{Q}$ yhtälöön (41) ja suoritetaan integrointi. Translaatiotermeistä saadaan

$$-2AL\sum_{1}^{3} [(u_{iA} + u_{iB})/2 - c_i]\delta c_i = 0, \text{ josta seuraa } c_i = (u_{iA} + u_{iB})/2, \quad i = 1, 2, 3.$$
(48)

Määritetään sitten $\delta\theta:$ aa vastaava yhtälö

$$-2AL\delta\theta\{\frac{L^{2}}{12}[n_{1}(F_{21}Q_{31}-F_{31}Q_{21})+n_{2}(F_{31}Q_{11}-F_{11}Q_{31})+n_{3}(F_{11}Q_{21}-F_{21}Q_{11})]+$$

+
$$\frac{b^{2}}{12}[n_{1}(R_{22}Q_{32}-R_{32}Q_{22})+n_{2}(R_{32}Q_{12}-R_{12}Q_{32})+n_{3}(R_{12}Q_{22}-R_{22}Q_{12})]+$$
(49)
+
$$\frac{h^{2}}{12}[n_{1}(R_{23}Q_{33}-R_{33}Q_{23})+n_{2}(R_{33}Q_{13}-R_{13}Q_{33})+n_{3}(R_{13}Q_{23}-R_{23}Q_{13})]\}=0.$$

Jotta yllä oleva lauseke olisi nolla, seuraavien yhtälöiden on toteuduttava

$$F_{21}Q_{31} - F_{31}Q_{21} = 0, \quad F_{31}Q_{11} - F_{11}Q_{31} = 0, \quad F_{11}Q_{21} - F_{21}Q_{11} = 0,$$

$$R_{22}Q_{32} - R_{32}Q_{22} = 0, \quad R_{32}Q_{12} - R_{12}Q_{32} = 0, \quad R_{12}Q_{22} - R_{22}Q_{12} = 0, \quad (50)$$

$$R_{23}Q_{33} - R_{33}Q_{23} = 0, \quad R_{33}Q_{13} - R_{13}Q_{33} = 0, \quad R_{13}Q_{23} - R_{23}Q_{13} = 0.$$

 $\delta \pmb{n}:$ ää vastaava osa on varsin pitkä. Deformaatiogradientin komponentit sisältävä merkittävä osa on

$$\begin{split} &\delta n_1 \{ \sin \theta (F_{31}Q_{21} - F_{21}Q_{31}) - (1 - \cos \theta) n_2 (F_{21}Q_{11} - F_{11}Q_{21}) \\ &+ (1 - \cos \theta) n_3 (F_{11}Q_{31} - F_{31}Q_{11}) \} = 0, \\ &\delta n_2 \{ \sin \theta (F_{11}Q_{31} - F_{31}Q_{11}) - (1 - \cos \theta) n_3 (F_{31}Q_{21} - F_{21}Q_{31}) \\ &+ (1 - \cos \theta) n_1 (F_{21}Q_{11} - F_{11}Q_{21}) \} = 0, \\ &\delta n_3 \{ \sin \theta (F_{21}Q_{11} - F_{11}Q_{21}) - (1 - \cos \theta) n_1 (F_{11}Q_{31} - F_{31}Q_{11}) \\ &+ (1 - \cos \theta) n_2 (F_{31}Q_{21} - F_{21}Q_{31}) \} = 0. \end{split}$$

Käyttämällä \mathbf{Q} :n kaavaa (40) näistä saadaan yhtälöt

$$\begin{split} &(1 + \Delta \tilde{u}_1)(1 - \cos\theta)^2 n_1 (n_2^2 + n_3^2) + (n_2 \Delta \tilde{u}_2 + n_3 \Delta \tilde{u}_3) [\sin^2\theta - \cos\theta(1 - \cos\theta) \\ &- (1 - \cos\theta)^2 n_1^2] + (n_3 \Delta \tilde{u}_2 - n_2 \Delta \tilde{u}_3) \sin\theta(1 - \cos\theta) n_1 = 0, \\ &- (1 + \Delta \tilde{u}_1) n_2 [\sin^2\theta + (1 - \cos\theta)^2 n_1^2] - (n_2 \Delta \tilde{u}_2 + n_3 \Delta \tilde{u}_3) \sin\theta(1 - \cos\theta) n_3 \\ &+ \Delta \tilde{u}_2 (1 - \cos\theta) n_1 [(1 - \cos\theta)(n_1^2 + n_3^2) + \cos\theta] - \Delta \tilde{u}_3 \sin\theta [\cos\theta + (1 - \cos\theta) n_1^2] \\ &- \Delta \tilde{u}_3 (1 - \cos\theta) n_1 n_2 n_3 = 0, \\ &- (1 + \Delta \tilde{u}_1) n_3 [\sin^2\theta + (1 - \cos\theta)^2 n_1^2] + (n_2 \Delta \tilde{u}_2 + n_3 \Delta \tilde{u}_3) \sin\theta(1 - \cos\theta) n_2 \\ &+ \Delta \tilde{u}_2 [\sin\theta(1 - \cos\theta) n_1^2 + \sin\theta\cos\theta - (1 - \cos\theta)^2 n_1 n_2 n_3] \\ &+ \Delta \tilde{u}_3 (1 - \cos\theta) n_1 [\cos\theta + (1 - \cos\theta) (n_1^2 + n_2^2)] = 0. \end{split}$$

Yllä olevat yhtälöt ovat varsin hankalia ja n:n ja θ :n ratkaisu on vaikeaa. Tarkastelemalla sauvan alku- ja lopputiloja voidaan kuitenkin johtaa eräs ratkaisu, joka toteuttaa kaikki yhtälöt,

$$n_1 = 0$$
, $n_2 = -\Delta \tilde{u}_3/N$, $n_3 = \Delta \tilde{u}_2/N$, $\cos \theta = (1 + \Delta \tilde{u}_1)(L/l)$ ja $\sin \theta = NL/l$,

Kuva 4. Sauvan taivutus.

joissa $N = \sqrt{(\Delta \tilde{u}_2)^2 + (\Delta \tilde{u}_3)^2}$ ja $l = L\sqrt{(1 + \Delta \tilde{u}_1)^2 + (\Delta \tilde{u}_2)^2 + (\Delta \tilde{u}_3)^2}$. Vastaava rotaatiomatriisi on

$$Q = R = \begin{bmatrix} \cos\theta & -\sin\theta n_3 & \sin\theta n_2\\ \sin\theta n_3 & \cos\theta + (1 - \cos\theta)n_2^2 & (1 - \cos\theta)n_2 n_3\\ -\sin\theta n_2 & (1 - \cos\theta)n_3 n_2 & \cos\theta + (1 - \cos\theta)n_3^2 \end{bmatrix}.$$

(Muitakin ratkaisuja on riippuen siitä, miten X_2 - ja X_3 -akselit kiertyvät). Venymätensorin **U** komponentit määritetään taas yhtälöstä $\mathbf{U} = \mathbf{R}^{\mathrm{T}} \mathbf{F}$, jolloin saadaan

$$U_{11} = \cos \theta (1 + \Delta \tilde{u}_1) + \sin \theta n_3 \Delta \tilde{u}_2 - \sin \theta n_2 \Delta \tilde{u}_3$$

= $(L/l)[(1 + \Delta \tilde{u}_1)^2 + (\Delta \tilde{u}_2)^2 + (\Delta \tilde{u}_3)^2] = l/L,$
 $U_{21} = -\sin \theta n_3 (1 + \Delta \tilde{u}_1) + [\cos \theta + (1 - \cos \theta) n_2^2] \Delta \tilde{u}_2 + (1 - \cos \theta) n_3 n_2 \Delta \tilde{u}_3 = 0,$
 $U_{31} = \sin \theta n_2 (1 + \Delta \tilde{u}_1) + (1 - \cos \theta) n_2 n_3 \Delta \tilde{u}_2 + [\cos \theta + (1 - \cos \theta) n_3^2] \Delta \tilde{u}_3 = 0,$
 $U_{12} = U_{13} = U_{23} = U_{32} = 0, \quad U_{22} = U_{33} = 1.$

Venymä $U_{11} - 1 = (l - L)/L$ on taas ns. insinöörivenymä.

Esimerkki 4. Palkin taivutus (Euler-Bernoulli)

Tarkastellaan suoran ohuen palkin taivutusta (Kuva 4). Palkin poikkipinta olkoon suorakaide bh. Valitaan suorakulmainen koordinaatisto siten, että X_1 -akseli yhtyy palkin akseliin. Tarkastellaan taivutusta X_1X_2 -tasossa. Tehdään tavanomaiset otaksumat: palkin akselia vastaan kohtisuorat poikkipintatasot pysyvät kohtisuorassa taipuneen palkin akselia vastaan (Euler-Bernoulli), palkin akseli ei veny, poikittaiset venymät voidaan jättää huomiotta.

Siirtymillä on tällöin lausekkeet

$$u_1 = u_{10}(X_1) - \sin \varphi(X_1)X_2, \quad u_2 = u_{20}(X_1) + [\cos \varphi(X_1) - 1]X_2, \quad u_3 = 0.$$
 (51)

 u_{10} ja u_{20} ovat palkin akselin siirtymät. Kulma φ on akselin ja samalla poikkipintatason kiertymäkulma. Deformaatiogradientin **F** ja rotaatiotensorin **Q** matriisit ovat

$$\mathbf{F} = \begin{bmatrix} 1 + u_{10,1} - \cos\varphi\varphi_{,1}X_2 & -\sin\varphi & 0\\ u_{20,1} - \sin\varphi\varphi_{,1}X_2 & \cos\varphi & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{Q} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}.$$
(52)

Kaavan (23) mukaisesta lausekkeesta seuraa

$$\delta D = -2 \iiint [\boldsymbol{u}(\boldsymbol{X}^{P}) + \mathbf{F}(\boldsymbol{X}^{P})(\boldsymbol{X} - \boldsymbol{X}^{P}) - \boldsymbol{c} - \mathbf{Q}(\boldsymbol{X} - \boldsymbol{X}^{P})] \cdot [\delta \boldsymbol{c} + \delta \mathbf{Q}(\boldsymbol{X} - \boldsymbol{X}^{P})] dV,$$

joka integroidaan ρ -pituisen palkin alkion yli. Saadaan

$$\delta D = -2\{\rho bh(\boldsymbol{u}^{P} - \boldsymbol{c}) \cdot \delta \boldsymbol{c} + \frac{\rho^{3}bh}{3} [-\sin\theta(1 + u_{10,1}) + \cos\theta u_{20,1} + \sin(\varphi - \theta)(1 - \varphi_{,1}X_{2}^{P})]\delta\theta\}.$$

Jotta tämä olisi nolla, täytyy olla

$$c_{1} = u_{10}(X_{1}^{P}), \quad c_{2} = u_{20}(X_{1}^{P}), \quad c_{3} = 0, 0 = -\sin\theta(1+u_{10,1}) + \cos\theta u_{20,1} + \sin(\varphi-\theta)(1-\varphi_{,1}X_{2}^{P}).$$
(53)

Koska palkin kiertynyt poikkipinta on kohtisuorassa palkin akselia vastaan, niin

$$\tan\varphi = \frac{u_{20,1}}{1+u_{10,1}}.$$
(54)

Palkin akselin venymättömyydestä seuraa

$$(1+u_{10,1})^2 + u_{20,1}^2 = 1.$$

Silloin

$$\sin \varphi = u_{20,1}, \quad \cos \varphi = 1 + u_{10,1},$$

ja jälkimmäisestä yhtälöstä (53) seuraa

$$0 = \sin(\varphi - \theta)(2 - \varphi_{,1}X_2^P), \text{ joten } \theta = \varphi.$$

Kiertymän derivaatta $\varphi_{,1}$ saadaan derivoimalla $\tan\varphi{:}n$ lauseke

$$\varphi_{,1} = \cos^2 \varphi \frac{u_{20,11}(1+u_{10,1})-u_{20,1}u_{10,11})}{(1+u_{10,1})^2} = u_{20,11}(1+u_{10,1})-u_{20,1}u_{10,11}.$$
 (55)

Biot'n venytystensori saadaan yhtälöstä $\mathbf{U} = \mathbf{R}^{\mathrm{T}} \mathbf{F}$. Sen komponenttimatriisi on

$$\mathbf{U} = \begin{bmatrix} 1 - \varphi_{,1} X_2^P & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Esimerkki 5. Palkin taivutus (Timoshenko)

Tarkastellaan suoran palkin taivutusta. Palkin poikkipinta on suorakaide A = bh ja X_1 akseli yhtyy palkin akseliin. Tarkastellaan taivutusta X_1X_2 -tasossa. Tehdään seuraavat otaksumat: palkin akselia vastaan kohtisuorat poikkipintatasot pysyvät tasoina, mutta eivät välttämättä kohtisuorassa taipuneen palkin akselia vastaan (Timoshenko), poikittaiset venymät voidaan jättää huomiotta.

Siirtymillä on tällöin lausekkeet

$$u_1 = u_{10}(X_1) - \sin \varphi(X_1)X_2, \quad u_2 = u_{20}(X_1) + [\cos \varphi(X_1) - 1]X_2, \quad u_3 = 0.$$

 u_{10} ja u_{20} ovat palkin akselin siirtymät. Kulma φ on poikkipintatason kiertymäkulma. Deformaatiogradientin **F** ja rotaatiotensorin **Q** matriisit ovat yhtälöiden (52) mukaiset.

Kaavan (23) mukaisesta lausekkeesta seuraa

$$\delta D = -2 \iiint [\boldsymbol{u}(\boldsymbol{X}^{P}) + \mathbf{F}(\boldsymbol{X}^{P})(\boldsymbol{X} - \boldsymbol{X}^{P}) - \boldsymbol{c} - \mathbf{Q}(\boldsymbol{X} - \boldsymbol{X}^{P})] \cdot [\delta \boldsymbol{c} + \delta \mathbf{Q}(\boldsymbol{X} - \boldsymbol{X}^{P})] dV,$$

joka integroidaan ρ -pituisen palkin alkion yli

$$\delta D = -2\{\rho bh(\boldsymbol{u}^{P} - \boldsymbol{c}) \cdot \delta \boldsymbol{c} + \frac{2\rho^{3}bh}{3} [-\sin\theta(1 + u_{10,1}) + \cos\theta u_{20,1} + \sin(\varphi - \theta)(1 - \varphi_{,1}X_{2}^{P})]\delta\theta\}.$$

Jotta tämä olisi nolla, täytyy olla

$$c_1 = u_1^P, \quad c_2 = u_2^P, \quad c_3 = 0, 0 = -\sin\theta (1 + u_{10,1}) + \cos\theta u_{20,1} + (\sin\varphi\cos\theta - \cos\varphi\sin\theta)(1 - \varphi_{,1}X_2^P)$$

Nähdään, että

$$\tan \theta = \frac{u_{20,1} + \sin \varphi (1 - \varphi_{,1} X_2^P)}{1 + u_{10,1} + \cos \varphi (1 - \varphi_{,1} X_2^P)}$$

toteuttaa yllä olevan yhtälön. Samoin huomataan, että $E_{11} = u_{10,1} - \cos \varphi \varphi_{,1} X_2^P$, $E_{22} = \cos \varphi - 1$, $W_{21} = [u_{20,1} + \sin \varphi (1 - \varphi_{,1} X_2^P)]/2$, joten

$$\tan \theta = \frac{W_{21}}{1 + (E_{11} + E_{22})/2}$$

tasomuodonmuutostilan keskimääräisen kiertymän (35) mukaisesti. Edelleen voidaan todeta, että jos φ on sama kuin palkin akselin kiertymä, ts. Eulerin-Bernoullin hypoteesi pätee, niin $\theta = \varphi$. Biot'n venytystensorin komponentit ovat monimutkaiset

$$U_{11} = \{(1+u_{10,1})^2 + u_{20,1}^2 + [(1+u_{10,1})\cos\varphi + u_{20,1}\sin\varphi](1-2\varphi_{,1}X_2^P) - \varphi_{,1}X_2^P(1-\varphi_{,1}X_2^P)\}/N,$$

$$U_{12} = U_{21} = [-(1+u_{10,1})\sin\varphi + u_{20,1}\cos\varphi]/N,$$

$$U_{22} = [(1+u_{10,1})\cos\varphi + u_{20,1}\sin\varphi + 1 - \varphi_{,1}X_2^P]/N.$$

 ${\cal N}$ tarkoittaa lauseketta

$$N = \sqrt{[1 + u_{10,1} + \cos\varphi(1 - \varphi_{,1}X_2^P)]^2 + [u_{20,1} + \sin\varphi(1 - \varphi_{,1}X_2^P)]^2}.$$

Linearisoimalla edellä olevat U_{ik} komponentit saadaan

$$U_{11} = 1 + u_{10,1} - \varphi_{,1} X_2^P, \quad U_{12} = U_{21} = (u_{20,1} - \varphi)/2, \quad U_{22} = 1,$$

jotka ovat lineaarisen teorian mukaiset.

Yhteenveto

Artikkelissa on tarkasteltu G.Griolin teoreemaa, jonka mukaan deformaatiogradientin mukainen rotaatiotensori minimoi tapahtuvan muodonmuutoksen. Tämä muodonmuutos on Biot'n venytystensorin mukainen. Teoreemaa on demonstroitu muutamien esimerkkien avulla: yksinkertainen leikkaus, tasomuodonmuutostila, Eulerin-Bernoullin ja Timoshenkon palkkiteoria sekä sauvaelementti kolmessa dimensiossa. Teoreeman voi ehkä tulkita aineen taloudellisena käyttäytymisenä: ensin 'löysät pois' koska jäykän kappaleen siirtymä ei synnytä mitään jännityksiä ja vasta sitten aine alkaa vastustaa muodonmuutosta.

Viitteet

- G.Grioli. Una proprietà di minimo nella cinematica delle deformazioni finite. Boll.Un.Mat.Ital. S.II, A. II, 5:452–455, 1940.
- [2] G.Grioli. Sistemi a trasformazioni reversibili. Centro Internazionale Matematico Estivo, pages 110–156, 1965.
- [3] C. Truesdell and R.A. Toupin. The Classical Field Theories. S. Flügge ed., Encyclopedia of Physics, Volume III/1, Springer-Verlag, Berlin, 1960.
- [4] L.C.Martins and P.Podio-Guidugli. A variational approach to the polar decomposition theorem. Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze fisiche, matematiche e naturali, LXVI:487–493, 1979.
- [5] M.Mikkola. Deformoituvan kappaleen suuret siirtymät. In Antti Pramila, editor, Proceedings of the 2nd Finnish Mechanics Days, pages 35–44, 1985. Tampere University of Technology, Department of Mechanical Engineering, Applied Mechanics.
- [6] P.Neff, J.Lankeit, and A.Madeo. On Grioli's minimum property and its relation to Cauchy's polar decomposition. *International Journal of Engineering Science*, 80:209– 217, 2014. URL: http://dx.doi.org/10.1016/j.ijengsci.2014.02.026.
- [7] L.D.Landau and E.M.Lifshitz. *Teoretitseskaja fisika. Tom 1. Mehanika*. Izdatel'stvo "Nauka", Moskva., 1960.
- [8] H. Parland. Rakenteiden vääntö. 1972. Tampereen teknillinen korkeakoulu, Rakennetekniikan laitos, Opetusmoniste No 1, Tampere 1972-79.
- [9] Andreas Fischle and Patrizio Neff. Explicit optimal Cosserat rotations. Poster, Technische Universität Dresden, University of Duisburg-Essen, January 2017. URL: https://doi.org/10.13140/RG.2.2.20190.43845.
- [10] G.A. Holzapfel. Nonlinear Solid Mechanics A Continuum Approach for Engineering. John Wiley & Sons, 2000.
- [11] Y. Başar and D. Weichert. Nonlinear Continuum Mechanics of Solids. Fundamental mathematical and physical concepts. Springer-Verlag, Berlin, 2000.
- [12] Q.-S. Zheng and K.C. Hwang. On Cauchy's mean rotation. Journal of Applied Mechanics, 59:405–410, 1992.

Martti Mikkola Aalto-yliopisto, Insinööritieteiden korkeakoulu, Rakennustekniikan laitos Rakentajanaukio 4 A, PL 12100, 00076 Aalto martti.mikkola@aalto.fi