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Summary  Masonry is a composite material and can be considered anisotropic on a macroscopic 
scale, i.e. masonry exhibits different properties in different directions, both in the elastic and 
inelastic range. Like other quasi-brittle materials, masonry exhibits softening and hardening 
behavior after failure for compression and tension. In this paper a smeared continuum plasticity 
model of masonry is presented as well as it numerical implementation in an explicit finite element 
time integration scheme, as such a material model does not exist for a commercial explicit finite 
element solver. The implementation is done by writing a user-defined material model (VUMAT) 
as a Fortran subroutine in the commercial software ABAQUS Explicit. The material model is 
tested both in uniaxial and biaxial loading against similar tests from earlier research. The results 
show good agreement with earlier research. 
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Introduction 

Masonry is a composite construction material which consists of bricks and mortar. The 

bricks are joined together by embedding the bricks in mortar layers. This jointing method 

generates a mortar layer pattern, where the horizontal layer is called the bed joint and the 

vertical mortar layer perpend joint or head joint [6]. Masonry is therefore a material which 

has distinct directional properties, as the mortar layers act as planes of weaknesses [16]. 

The directional properties of masonry are dependent on the properties of the brick and 

mortar as well as on the head and bed joint pattern.  

Despite the wide use of masonry around the world and throughout history, the 

accurate design and analysis of masonry structures remains cumbersome and no general 

approach seems to exist. Practical design-code based approaches have been implemented, 

 
 

http://rakenteidenmekaniikka.journal.fi/index
https://doi.org/10.23998/rm.76502


241 

and as an example, The European Standard has developed an own Eurocode series, the 

Eurocode 6, only for the analysis and design of masonry structures [6]. Numerical and 

simulation-based approaches for masonry structures have been studied and implemented 

as long as from the 1980s, but no common way for a general modelling approach is set 

as a “standard”. One way of modelling masonry in a finite-element analysis involves a 

detailed model of the mortar joint with elements or with a simplified connection interface 

between the bricks. In practice this means building each masonry brick and the mortar 

joint in detail in the finite element model. This kind of approach may result in tedious 

manual work for complicated models and structures, not to mention long run times of the 

analysis. This modelling approach is commonly referred to as “micro-modelling” [11] or 

“discrete-modelling” [2]. Another numerical method involves a homogenization and 

smearing of the mortar and brick to a single unified continuum in which the relation 

between average stresses and strains are established. The smeared approach of masonry 

can feature anisotropy in both the elastic and inelastic range, and is normally referred to 

as “macro-modelling” [11] or “smeared-modelling” [2]. This method proves to be 

practical as normal modelling methods and practices can be used. 

 

 

 

In recent years, interest in the smeared modelling has occurred as different 

engineering companies have developed smeared masonry material models for their own 

business purposes, to use together with commercial software such as ABAQUS and LS-

DYNA [1, 19]. These developed models are not publicly available and more 

comprehensive information about these models has not been found. The commercial 

general-purpose finite-element software DIANA FEA has developed a masonry model 

together with the Technical University of Delft which can be used within their product 

[5]. However, the DIANA FEA solver uses an implicit finite element time integration 

scheme for time history analysis, which might not be applicable for certain types of 

analyses. As an example, seismic nonlinear time history analysis may require an explicit 

time integration if the model is complicated and highly nonlinear.  

As no commercial finite element software with an explicit time integration scheme 

and an in-built masonry model exists, this research aims to develop the material model 

for the explicit integration scheme with a smeared modelling approach. The development 

is done by first presenting the constitutive behavior of masonry and thereafter 

implementing the behavior in a general plasticity theory framework. The material is tested 

by writing a Fortran subroutine which is used within the commercial software ABAQUS 

Explicit. Even though the developed code will be only compatible with ABAQUS, a 

similar approach and idea can be used for other finite element explicit solvers (such as 

the LS-DYNA solver). The Fortran subroutine is tested in single-element uniaxial loading 

and four-element biaxial loading against reference cases from earlier research. These 

Figure 1. Typical masonry pattern. The figure shows the alignment of the joints. 
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reference cases where chosen as they were the only reference tests that were found from 

literature for simply modelling the constitutive behavior of the masonry material model. 

Plasticity model for masonry 

Failure surface 

The proposed masonry model involves modelling masonry as a smeared quasi-brittle 

material. Differing from the normal isotropic quasi-brittle material models, the proposed 

masonry model considers both linear and nonlinear behavior to be different in distinct 

directions, even for small deformations. The elastic deformations can be considered with 

classical anisotropic elasticity theory. For the inelastic range, experiments have shown 

that considering the failure surface in terms of only two principal stresses is not enough 

as the orientation of the bed joint influences the strength. Page [16] conducted 

experimental research on the strength of masonry panels in biaxial loading.  He tested the 

biaxial strength of 102 solid clay brick masonry panels by applying different loads and 

loading rates in the two principle stress directions 𝜎𝐼 and 𝜎𝐼𝐼. As a result, Page obtained a 

failure surface for masonry panels expressed with the two principle stresses  𝜎𝐼 and 𝜎𝐼𝐼, 

and the bed joint orientation angle 𝜃. Ganz and Thülimann [7, 8, 9] conducted similar 

research where they tested different masonry panels for biaxial loading as well as masonry 

walls loaded with normal and shear forces. As a result, they obtained tables of different 

load values and load combinations at failure supporting Page’s results. 

 

 

Another possible representation of the failure surface can be found in terms of spatial 

directions, x and y, where x and y are oriented according to the head and bed joint. In this 

case, the failure surface is represented by the full plane-stress vector (𝜎𝑥  , 𝜎𝑦  , 𝜏𝑥𝑦). For 

fully determining the yield surface in spatial stresses, seven parameters are needed, which 

are expressed in  

(a) (b) 

Figure 2. Failure measurements of masonry panels in biaxial compression. (a) the test setup 

and (b) the failure surface in 𝝈𝑰 − 𝝈𝑰𝑰 plane for different 𝜽 [16]. 
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Table 1. For further details of testing and determining the parameters we refer to [14].  
 

Table 1. Strength parameters for determining the failure surface in spatial stresses 

 

Parameter Description  

𝑓𝑡𝑥0 initial tensile strength in x-direction  

𝑓𝑡𝑦0 initial tensile strength in y-direction  

𝑓𝑐𝑥0 peak compressive strength in x-direction  

𝑓𝑐𝑦0 peak compressive strength in y-direction  

𝛼 weight of shear stress contribution to tensile failure  

𝛽 weight of coupling between normal stresses in compressive failure  

𝛾 weight of shear stress contribution to compressive failure  

The anisotropic super-hyperbolic Rankine-Hill yield surface 

Lourenco et al. [11, 12, 13, 14] presented an analytical yield surface based on a combined 

yield surface of Rankine and Hill in the spatial stress space (𝜎𝑥  , 𝜎𝑦 , 𝜏𝑥𝑦) for masonry. 

The Rankine failure surface represents the tensile part of the yield surface. Similarly, for 

compression, a general Hill-type yield criterion is used. This combined multi-surface 

yield criterion is problematic due to an apex in the tension region which causes numerical 

instabilities when loading occurs close to the apex. In addition, using these two yield 

surfaces involves distinguishing which part of the combined yield criteria is violated 

when failure occurs. Therefore, van der Meer [15] proposed a similar Rankine-Hill yield 

criterion as an imposed single super-hyperbolic criterion for masonry. This single 

criterion results in rounding of the apex area and better numerical stability. The yield 

surface is visualized in Figure 3.  

 

The super-hyperbolic yield surface is defined by composing different yield criteria 𝑓𝑖 
in such a way that they satisfy the condition 
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0 

0 

Figure 3. The Super-hyperbolic yield surface in the 𝝈𝒙 − 𝝈𝒚 plane and the corresponding 

Rankine and Hill yield surfaces. 
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 ∑ 𝑓𝑖
𝑚  𝑖 − 1 ≤ 0 ,  (1) 

 

where 𝑚 is an even integer number, normally taken as 32. Van der Meer utilized equation 

(1) and split the Rankine and Hill yield criteria in different parts. The Rankine part is 

defined as 

 

 
𝑓𝑅 =

𝑛𝑅

𝑑𝑅
 ,  (2) 

 

where 𝑛𝑅 and 𝑑𝑅 are  

 

 

𝑛𝑅 = √[(
(𝜎𝑥−𝑓𝑡𝑥)−(𝜎𝑦−𝑓𝑡𝑦)

2
)

𝑛

+ 𝜇𝑛] + 𝛼𝜏𝑥𝑦
2  , (3) 

 
𝑑𝑅 = −

(𝜎𝑥−𝑓𝑡𝑥)−(𝜎𝑦−𝑓𝑡𝑦)

2
 . (4) 

 

The variables 𝑓𝑡𝑥  and 𝑓𝑡𝑦  are the reduced tensile strength parameters defined in equation 

(16). The material parameter 𝜇 is defined in equation (17). The power 𝑛 is normally taken 

as 16. Similarly, the Hill part is defined for compression as 

 

 
𝑓𝐻 =

𝑛𝐻

𝑑𝐻
 ,  (5) 

 

where 𝑛𝐻 and 𝑑𝐻 

 

 
𝑛𝐻 = √𝛽𝜎𝑥𝜎𝑦 +

𝑓𝑐𝑥

𝑓𝑐𝑦
𝜎𝑦

2 +
𝑓𝑐𝑦

𝑓𝑐𝑥
𝜎𝑥

2 + 𝛾𝜏𝑥𝑦
2  , (6) 

 
𝑑ℎ = √𝑓𝑐𝑥𝑓𝑐𝑦  . (7) 

 

The variables 𝑓𝑐𝑥  and 𝑓𝑐𝑦  are the reduced or increased compressive strength parameters 

defined in equations (18) to (20). Combing and inserting equations (2) to (7) into (1) with 

some manipulation yields 

 

 
𝑓𝑅𝐻 =

1

𝑑𝐻
(𝑛𝑅

𝑚𝑑𝐻
𝑚 + 𝑛𝐻

𝑚𝑑𝑅
𝑚)1/𝑚 − 𝑑𝑅 ≤ 0 ,  (8) 

 

which is the super-hyperbolic Rankine-Hill yield surface. The yield surface is presented 

in Figure 3. 
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Hardening and softening 

Usually, formulations of hardening and softening for quasi-brittle isotropic material 

consider different inelastic criteria for tension and compression. As masonry is also 

considered to be a quasi-brittle material, it includes similar hardening and softening 

features. For tension, the post-failure behavior consists of an exponential softening in 

both distinct directions. On the other hand, the compression has an initial hardening 

phase, after which a softening phase follows. The hardening and softening for 

compression are also distinct in different directions. Figure 4 shows typical inelastic 

characteristics for tension and compression. 

 

 

For the prescribed model, the development of plastic flow is assumed to be associated, 

i.e. the yield function serves as the plastic potential. Thereby the plastic strain is defined 

by the plastic multiplier 𝜆 and yield surface 𝑓𝑅𝐻  as 

 

 
𝜺𝒑𝒍 = 𝜆

𝜕𝑓𝑅𝐻

𝜕𝝈
 , (9) 

 

The evolution of hardening and softening is described with a hardening law. The state of 

the evolution is controlled by the hardening variable 𝜅. The hardening law is defined as 

 

 𝜿 = 𝜆𝒉 , (10) 

 

where 𝒉 is the hardening modulus. The hardening or softening is distinct for both tension 

and compression and noted as 𝜅𝑡 and 𝜅𝑐, respectively. 

To implement compression hardening or softening and tension softening for the given 

yield surface, the plastic strain must be separable into parts belonging to Rankine surface 

and Hill surface, hence 

 

 
𝜺𝒑𝒍 = 𝜆

𝜕𝑓𝑅𝐻

𝜕𝝈
= 𝜆 (

𝜕𝑓𝑅

𝜕𝝈
+

𝜕𝑓𝐻

𝜕𝝈
) . (11) 

Figure 4. (a) Uniaxial tension with softening and (b) uniaxial compression with initial hardening 

and a softening branch [11]. 

(a) (b) 
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The hardening modulus 𝒉 is thereby distinguishable in a Rankine (tension) and Hill 

(compression) part. Van der Meer [15] gives the Rankine softening moduli ℎ𝑅 as 

 

 

ℎ𝑅 = √1

2
(

𝜕𝑓𝑅

𝜕𝝈
)
𝑇

𝑸
𝜕𝑓𝑅

𝜕𝝈
+

1

2
𝝅𝑇 𝜕𝑓𝑅

𝜕𝝈
 , (12) 

 

where the matrix 𝑸 and vector 𝝅 are defined as 

 

 

𝑸 = 

[
 
 
 
 

1

2
−

1

2
0

−
1

2

1

2
0

0 0
1

2]
 
 
 
 

 ,   (13) 

 𝝅 = (1 1 0)𝑇  .   (14) 

 

The Hill hardening and softening moduli ℎ𝐻 is given as 

 

 
ℎ𝐻 =

1

𝑑𝐻
𝝈𝑇 𝜕𝑓𝐻

𝜕𝝈
 . (15) 

 

The actual tension softening law can be expressed as a decaying exponential function 

of the tensile strength 𝑓𝑡𝑥 and 𝑓𝑡𝑦 . Van der Meer [15] gives one possibility as 

 

 
𝑓𝑡𝑖(𝜅𝑡) =

5

2
𝜇 + (𝑓𝑡𝑖0 −

5

2
𝜇) 𝑒𝑥𝑝 (−

ℎ𝑓𝑡𝑖0

𝐺𝑡𝑖
) ,         𝑖 = 𝑥, 𝑦           (16) 

 

where 𝜅𝑡 is the tension softening variable, 𝐺𝑡𝑖 is the fracture energy and ℎ is the 

characteristic element length (typically taken as the square root of the area). The idea of 

utilizing fracture energy together with the characteristic element length is to obtain an 

energy release independent of the mesh size and hence avoid mesh sensitivity [11]. The 

parameter 𝜇 controls the residual strength in equation (16) and improves the numerical 

stability. It is defined as 

 

 
𝜇 =

2𝜇𝑡𝑜𝑙

5
𝑚𝑖𝑛(𝑓𝑡𝑥0 , 𝑓𝑡𝑦0) ,  (17) 

 

where 𝜇𝑡𝑜𝑙  is a small arbitrary value, normally between 0.01 and 0.1, for controlling the 

residual strength. 

For the compression, which considers both hardening and softening, the law for the 

post-failure behavior is more complex. The increase and decrease of the compression 

strengths 𝑓𝑐𝑥  and 𝑓𝑐𝑦  are given as the partly defined function 
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 𝑓𝑐𝑖(𝜅𝑐) = 𝑓𝑐𝑖0 − 𝑏𝑖 + 𝑏𝑖√1 − (
𝜅𝑐−𝜅𝑝

𝑎𝑖
)

2

,               𝜅𝑐 < 𝜅𝑝  (18) 

 

𝑓𝑐𝑖(𝜅𝑐) = 𝑓𝑐𝑖0 −
1

2
𝑓𝑐𝑖0 (

𝜅𝑐−𝜅𝑝

𝜅𝑚𝑖−𝜅𝑝
)

2

,             𝜅𝑝 ≤ 𝜅𝑐 < 𝜅𝑚𝑖       (19) 

 

𝑓𝑐𝑖(𝜅𝑐) =
1

10
𝑓𝑐𝑖0 +

2

5
𝑓𝑐𝑖0 𝑒𝑥𝑝(𝑚𝑖

𝜅𝑐−𝜅𝑚𝑖
2

5
𝑓𝑐𝑖0

) ,      𝜅𝑚𝑖 ≤ 𝜅𝑐 (20) 

 𝑖 = 𝑥, 𝑦,   
 

 

where 𝜅𝑐 is the hardening variable,  𝑓𝑐𝑥0 and 𝑓𝑐𝑦0 are the peak compression strengths and 

𝜅𝑝 the value of the hardening variable at peak compression. The additional parameters 

𝑎𝑖 , 𝑏𝑖  , 𝜅𝑚𝑖 and 𝑚𝑖 are only for shorter equation formulations of equations (18) to (20) and 

defined as 

 

𝑚𝑖 =
−𝑓𝑐𝑖0

𝜅𝑚𝑖−𝜅𝑝
 , (21) 

𝑘𝑚𝑖 =
75

67

𝐺𝑐𝑖

ℎ𝑓𝑐𝑖0
+ 𝜅𝑝 , (22) 

𝑎𝑖 = √
𝜅𝑝(−

1

2
𝑓𝑐𝑖0+𝐻0𝜅𝑝)

2

𝐻0(−
1

2
𝑓𝑐𝑖0+𝐻0𝜅𝑝)

 ,  (23) 

𝑏𝑖 =
−

1

2
𝑓𝑐𝑖0

√
(−

1
2
𝑓𝑐𝑖0)

2

(− 
1
2
𝑓𝑐𝑖0+𝐻0𝜅𝑝)

2−1

 .  
(24) 

 

The parameter 𝐻0 in equation (23) is an arbitrary large value that determines the initial 

slope of the hardening. The compression hardening and softening described in equations 

(18) to (24) is visualized in Figure 5. 

For fully determining the hardening and softening of the material model, the 

parameters in Table 2 need to be defined together with the tensile and compressive 

strengths 𝑓𝑡𝑥0 , 𝑓𝑡𝑦0 , 𝑓𝑐𝑥0 and 𝑓𝑐𝑦0.  
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Table 2. Material parameters for determining hardening and softening 

 

Parameter Description  

𝐺𝑡𝑥 tensile fracture energy in 𝑥-direction  

𝐺𝑡𝑦 tensile fracture energy in 𝑦-direction  

𝐺𝑐𝑥  compressive fracture energy in 𝑥-direction  

𝐺𝑐𝑦 compressive fracture energy in 𝑦-direction  

𝜅𝑝 peak strain for peak compressive stress  

𝜇𝑡𝑜𝑙 small numerical value for residual strength in tension softening  

𝐻0 large numerical value for controlling the initial slope in compression 

hardening 

 

Finite element implementation 

Explicit finite elements 

Given the dynamic explicit finite element discretization as 

 

 
𝑴

𝜕𝟐𝒖

𝜕𝑡2 = 𝑭 − 𝑰 ,  (25) 

  

it follows to find the displacement 𝒖 for time 𝑡, given the internal force vector 𝑰, external 

force vector 𝑭 and the lumped mass matrix 𝑴 [3]. To solve for the displacements 𝒖, 

equation (25) is further discretized in the time domain for numerical time integration. One 

possible discretization is the central difference rule which is utilized by ABAQUS [4]. 

This leads to a straight-forward method as 

 

 
�̈�𝒏 = 𝑴−𝟏(𝑭𝒏 − 𝑰𝒏) ,  (26) 

Figure 5. Illustration of equations (18) to (24) for the compression hardening and softening [11]. 
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�̇�

𝒏+
𝟏

𝟐

= �̇�
𝒏−

𝟏

𝟐

+
∆𝒕𝒏+𝟏 + ∆𝑡𝑛

𝟐
�̈�𝒏 ,   (27) 

 𝒖𝒏+𝟏 = 𝒖𝒏 + ∆𝑡𝑛+1�̇�𝑛+
1

2

 .  (28) 

 

The subscripts in equations (26) to (28) refer to discretization of the time 𝑡 . The double 

dot sign in the previous equations correspond to acceleration (second derivative of 

displacement with respect to time) and the single dot to velocity (first derivative of the 

displacement with respect to time). The time increment ∆𝑡 is calculated during the 

analysis. To be able to use equations (26) to (28), the initial velocity states need to be 

defined and are given by the user. 

The internal force vector 𝑰 in equation (25) is constructed by evaluating the stresses 

at the integration points. The internal force vector is taken as 

 

 
𝑰 = ∫𝑩𝑻𝝈𝑑𝑉,   (29) 

 

where 𝑩 is the Jacobian matrix of the element shape functions. As the stresses are a 

function of the strains and the central difference integration evaluates the displacement 

field for the next time increment, it is possible to evaluate the stresses at the beginning of 

the time increment and hence construct the internal force vector at the beginning of each 

time step. In commercial finite element software, this opens the possibility to write user-

defined material models. Usually in ABAQUS or LS-DYNA, these material models are 

written as Fortran subroutines and included in the analysis [4, 10]. For ABAQUS Explicit, 

this kind of subroutine is called a “VUMAT” and for LS-DYNA 

“MAT_USER_DEFINED_MATERIAL_MODELS”. For the VUMAT, ABAQUS calls 

the subroutine at each time increment to determine stresses at each integration point. The 

subroutine receives the strain increment ∆𝜺, old stresses 𝝈𝒏  and the old state variables 

𝜺𝒑𝒍,𝒏 and 𝜿𝒏  as an input, and the subroutine determines the new stresses 𝝈𝒏+𝟏 and new 

state variables 𝜺𝒑𝒍,𝒏+𝟏 and 𝜿𝒏+𝟏 for the new time 𝑡𝑛+1. The internal force vector 𝑰 is 

constructed by the solver itself. It is also possible to calculate the internal energies and 

internal inelastic energies within the subroutine. 

Implemented material model 

The failure model for masonry is implemented as an ABAQUS VUMAT subroutine. The 

material model assumes the strain increment to be given by the analysis at each time step. 

The task remains to determine the stresses at each time step. The material model is divided 

conventionally into an elastic and plastic part where the plastic part is initialized if yield 

criterion (8) is violated. The material model can be summarized with the constitutive 

equations:  

 

STRESS-STRAIN RELATIONSHIP: 𝝈 = 𝑪(𝜺 − 𝜺𝒑𝒍),   (30) 
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FLOW RULE: 𝜺𝒑𝒍 = 𝜆
𝜕𝑓𝑅𝐻

𝜕𝝈
,  (31) 

HARDENING LAW: 𝜿 = 𝜆𝒉, (32) 

YIELD CRITERION: 𝑓𝑅𝐻(𝝈,𝜿) =
1

𝑑𝐻
(𝑛𝑅

𝑚𝑑𝐻
𝑚 + 𝑛𝐻

𝑚𝑑𝑅
𝑚)1/𝑚 − 𝑑𝑅 ,  (33) 

 

subjected to the Kuhn-Tucker loading or unloading conditions 

 

 𝜆 ≥ 0,   (34) 

 𝑓𝑅𝐻(𝝈,𝜿) ≤ 0, (35) 

 𝜆𝑓𝑅𝐻(𝝈, 𝜿) = 0, (36) 

 

and consistency condition 

 

 
𝜆𝑓𝑅�̇�(𝝈, 𝜿) = 0.  (37) 

 

The implementation of the material model for the constitutive equations thereby 

require to determine the new state (𝜺𝒑𝒍,𝒏+𝟏, 𝜿𝒏+𝟏, 𝝈𝒏+𝟏), given the previous state 

(𝜺𝒑𝒍,𝒏, 𝜿𝒏, 𝝈𝒏) and the strain increment ∆𝜺, so that the equations (30) to (37) hold. One 

approach for solving this problem is to utilize an elastic predictor and plastic corrector 

integration scheme. This integration scheme assumes the first increment to be completely 

elastic. If the elastic predictor violates the yield criterion, the stresses are corrected with 

a plastic corrector to the feasible stress space, i.e. projected back to the yield surface. This 

approach transforms the constitutive equations (30) to (37) into a set of nonlinear 

algebraic equations that need to be solved. Solving this kind of problem is normally 

referred to as return mapping and involves usually an iterative scheme for obtaining a 

solution. For simple elastic-plastic models, analytical and elegant solutions may be found. 

Nevertheless, one possible method for integration of the constitutive equation is the 

cutting-plane algorithm which is used for the return mapping in this model. For further 

details and derivation of the cutting-plane algorithm, we refer to [17, 18]. 

Given the strain increment for a given time 𝑡𝑛+1, the elastic predictor can be calculated 

with the stress-strain relationship (30) where it is assumed that the elasticity matrix 𝑪 is 

orthotropic and defined as 

 

 

𝑪 =  

[
 
 
 𝐸𝑥

𝑣𝐸𝑥

1−𝑣2 0

𝑣𝐸𝑦

1−𝑣2 𝐸𝑦 0

0 0 𝐺𝑥𝑦]
 
 
 

 .  (38) 
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The elastic predictor is then 

 

 𝝈𝒏+𝟏 = 𝝈𝒏 + 𝑪∆𝜺.  (39) 

 

The material parameters 𝐸𝑥 , 𝐸𝑦 , 𝑣 and 𝐺𝑥𝑦 refer to the Young’s moduli in different 

directions, Poisson’s ratio and the shear modulus, respectively.  

If the calculated elastic predictor stress violates the yield criterion (33), the stresses 

are returned to the yield surface and the feasible stress space by the corrector step. This 

is done by increasing the plastic strain and hence lowering the stresses. Thereby the 

equations need to be solved for 𝜆. The cutting-plane algorithm is a straightforward method 

for solving 𝜆, and is geometrically illustrated in Figure 6. The cutting-plane algorithm is 

an explicit scheme and has a quadratic convergence rate [17].  

The cutting-plane algorithm is implemented for the prescribed material model and the 

procedure is summarized below. 

INPUT: 

∆𝜺 = total strain increment 

𝝈𝒏= stress at previous time step 

𝜿𝒏 = hardening-softening variable at previous time step 

𝜺𝒑𝒍,𝒏= plastic strain at previous time step 

 

ADDITIONAL VARIABLES: 

𝑓𝑅𝐻  = yield surface 

𝜆 = plastic increment 

∆𝜺𝒑𝒍 = plastic strain increment 

 

OUTPUT:  

𝝈𝒏+𝟏= updated stress 

𝜺𝒑𝒍,𝒏+𝟏 = updated plastic strain 

𝜿𝒏+𝟏= updated hardening-softening variable 

 

Figure 6. Illustration of the cutting-plane algorithm [17]. 
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1. Initialize: 

 

∆𝜺𝒑𝒍
(0)

= 𝟎, 𝜿𝒏+𝟏
(𝑘)

= 𝜿𝒏, 𝜆(0) = 0,       𝑘 = 0 

 

2. Calculate elastic stress: 

 

𝝈𝒏+𝟏
(𝑘)

= 𝝈𝒏 + 𝑪(∆𝜺 − ∆𝜺𝒑𝒍
(𝑘)

) 

 

Calculate hardening moduli 

 

𝒉𝒏+𝟏
(𝑘)

= ℎ(𝝈𝒏+𝟏
(𝑘)

, 𝜿𝒏+𝟏
(𝑘)

) 

 

Calculate yield surface: 

 

𝑓𝑅𝐻
(𝑘)

= 𝑓(𝝈𝒏+𝟏
(𝑘)

, 𝜿𝒏+𝟏
(𝑘)

) 

 

3. Calculate plastic increment: 

 

𝜆(𝑘) =
𝑓𝑅𝐻

(𝑘)

(
𝜕𝑓𝑅𝐻

(𝑘)

𝜕𝝈𝒏+𝟏
(𝒌)⁄ )

𝑇

𝑪(
𝜕𝑓𝑅𝐻

(𝑘)

𝜕𝝈𝒏+𝟏

(𝒌)⁄ ) + (
𝜕𝑓𝑅𝐻

(𝑘)

𝜕𝜿𝒏+𝟏
(𝒌)⁄ )

𝑇

𝒉𝒏+𝟏
(𝒌)

 

 

 

4. Update variables: 

 

∆𝜺𝒑𝒍
(𝑘+1)

= ∆𝜺𝒑𝒍
(𝑘)

+ 𝜆(𝑘) (
𝜕𝑓𝑅𝐻

(𝑘)

𝜕𝝈𝒏+𝟏
(𝑘)⁄ )   

 

𝜿𝒏+𝟏
(𝑘+1)

= 𝜿𝒏
(𝑘)

+ 𝜆(𝑘)𝒉𝒏+𝟏
(𝑘)

   
 

5. Go to 2 and set 𝑘 ← 𝑘 + 1 and repeat N times. 

 

6. After N iterations update the plastic strains: 

 

𝜺𝒑𝒍,𝒏+𝟏 = 𝜺𝒑𝒍,𝒏 + ∆𝜺𝒑𝒍
(𝑁)

 

Note that in step 2, the yield criterion is not checked and the iteration loop is not stopped 

and exited if 𝒇𝑹𝑯
(𝒌)

≤ 𝟎, instead we do a fixed amount of iterations for robustness. 
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Reference tests of the material model 

For evaluating the performance of the developed material model, three small reference 

cases were selected for comparison: 

 

1) a single-element test for uniaxial compression and tension in both 𝑥 and 𝑦 

directions, where the reference case was done by Lourenco [11], 

2) a single-element test for uniaxial compression and tension in both 𝑥 and 𝑦 

directions, where the reference case was done by van der Meer [15], 

3) a four-element test for biaxial compression and tension, where the reference case 

was done by van der Meer [15]. 

 

The material model used by van der Meer was the same as the presented material model. 

However, van der Meer’s material model or any masonry model in a commercial finite 

element software has not been implemented in an explicit finite element integration 

scheme and hence we seek to apply van der Meer’s model in an explicit finite element 

integration scheme. Both Lourenco’s and van der Meer’s material models were used and 

developed for an implicit finite element time integration scheme. Also, the material model 

used by Lourenco is slightly different as it was developed earlier, and van der Meer made 

some improvements to the model.  

The reference models were built in ABAQUS Explicit. A four-node shell element, 

S4R, was used in the analysis, with three integration points through the thickness. The 

size of the element depended on the reference case and is shown in Table 3. The loading 

was applied by giving the element edge a prescribed displacement in the direction of 

interest. The load was ramped up with ABAQUS’s smooth step function. As the reference 

tests were done with an implicit solver as a static case, a high simulation time was chosen, 

i.e. 30𝑠 to avoid any dynamical effects. In addition, the time step was kept small for 

stability. The used time step varied between 2-10μs. The analysis was run with double 

precision, for both the analysis and the packager. For the four-element biaxial load case, 

a load rate of 1:2 in 𝑥 and 𝑦 direction was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The material model was implemented as a Fortran VUMAT subroutine with the 

parameters given in Table 4. The material values for the reference case of van der Meer 

and Lourenco, were taken directly from [15] and [11]. The meaning of the material 

Figure 7. The setup for the ABAQUS models: (a) the single-element model and (b) the four-

element model. 
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parameters 𝑓𝑡𝑥0 , 𝑓𝑡𝑦0, 𝑓𝑐𝑥 , 𝑓𝑐𝑦 , 𝛼, 𝛽 and 𝛾 are summarized in Table 2 and the parameters 

𝐺𝑡𝑥 𝐺𝑡𝑦, 𝐺𝑐𝑥 , 𝐺𝑐𝑦, 𝜅𝑝, 𝜇𝑡𝑜𝑙  and 𝐻0 are summarized in Table 3. The derivation of the 

beforementioned parameters from tests are described in [14].  

 
Table 3. Element size of reference cases. 

 

 

 

 

 
Table 4. Used material parameters. 

Parameter Lourenco Van der Meer 

𝐸𝑥 [MPa] 10 000 14 000 

𝐸𝑦 [MPa] 5 000 14 000 

𝐺𝑥𝑦  [MPa] 3 000 5 833.33 

𝑣 [-] 0.2 0.2 

𝑓𝑡𝑥0 [MPa] 1.0 0.2 

𝑓𝑡𝑦0 [MPa] 0.5 1.0 

𝐺𝑡𝑥 [N/mm] 0.02 0.0255 

𝐺𝑡𝑦[N/mm] 0.006 0.127 

𝑓𝑐𝑥0[MPa] 10 10 

𝑓𝑐𝑦0[MPa] 5 20 

𝐺𝑐𝑥[N/mm] 5 46.7 

𝐺𝑐𝑦[N/mm] 1.6 93.3 

𝛼 [-] 1 1 

𝛽 [-] -1 -1 

𝛾 [-] 3 3 

𝐻0 [MPa] 100 000 100 000 

𝜅𝑝 [-] 0.0005 0.002 

𝜇𝑡𝑜𝑙 [-] 0.01 0.1 

Results 

Single-element uniaxial load reference tests 

The results for the uniaxial single element test cases are shown in Figure 8 and  Figure 9. 

The red color indicates the developed and presented material model and is noted as 

“VUMAT” in the legend. 

Reference case 1-E Lourenco 1-E van der Meer 4-E van der Meer  

h [mm] 100 424 300  
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Four-element biaxial load reference tests 

The results for the biaxial four element test cases are shown in Figure 11 and Figure 10. 

The red color indicates the developed and presented material model and is noted as 

“VUMAT” in the legend.  
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Figure 8. Comparison of results between the developed material model for (a) tension tests and 

(b) compression tests. Comparison results from Lourenco [11]. 

Figure 9. Comparison of results between the developed material model for (a) tension tests and 
(b) compression tests. Comparison results from van der Meer [15]. 
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Discussion 

For the uniaxial single-element tests, good agreement between the developed material 

model and the reference cases were found. The stress-strain behavior of the developed 

material model followed the same results obtained by van der Meer [15]. A minor 

difference for compression between the developed material model and the results from 

Lourenco [11] can be seen. The deviation is explained by the difference in the analytical 

expressions for compression hardening, where Lourenco uses a slightly different 

analytical formula for determining the compression stress. 
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Figure 11. Comparison of results from the biaxial tension loading test for (a) x-direction and (b) y-

direction. Comparison results from van der Meer [15]. 

Figure 10. Comparison of results from the biaxial compression loading test for (a) x-direction 

and (b) y-direction. Comparison results from van der Meer [15]. 
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The four-element tests show agreement with the results obtained by van der Meer 

[15]. However, for the tension test case the developed material model showed a sharper 

drop in strength than the reference case. One explanation for this is the use of an explicit 

solver where static equilibrium is not checked nor necessary. The elements showed an 

uneven stress distribution when failure occurred, which might be caused by the lack of 

convergence and equilibrium checks. For compression, the developed material model 

showed more capacity in the softening phase. The reason for this might also be the uneven 

stress distribution which occurred. Nonetheless, the obtained results are still comparable 

to the reference case done by van der Meer.  

Running the analysis showed sensitivity to the time step. When using larger time 

increments (size of 100𝜇𝑠) non-convergence occurred in the return mapping. Decreasing 

the time increments by a factor of 10 solved the non-convergence issue. For future cases, 

this issue might be problematic where large strains and failure can occur rapidly.  For the 

cutting-plane algorithm, it is known that using larger increments might cause problems 

and incorrect results. For future work we propose to investigate the stability of the return 

mapping by using implicit return mappings such as the closest-point-projection (fully 

implicit backward Euler) for the integration of the constitutive equations (30) to (37).  

Material models utilizing a strain softening approach are known to be mesh sensitive. 

In this research, mesh sensitivity was not an issue as the model was tested on a few 

elements and compared to reference cases of literature [11,15] with the same element 

size. Nonetheless, the softening phase of the presented model is handled with a fracture 

energy-based regularization using a characteristic element length (square root of element 

area), which is a common practice in the field to overcome mesh sensitivity. 

The comparison was a study of the constitutive behavior of the material model and its 

implementation in an explicit finite element integration scheme. The model was not tested 

on meshes with larger number of elements due to the lack of simple reference cases with 

large meshes. For future work, we propose to investigate the behavior, sensitivity and 

stability of the material model for different meshes and mesh sizes. 

The presented and tested material model could be used together with commercial 

finite element software with an explicit time integration scheme for estimating the failure 

behavior of masonry structures. For the implicit finite element solver one commercially 

available software exists with an in-built masonry material model. Nonetheless, the 

implicit time integration is unpractical when solving highly dynamic and nonlinear 

problems. Therefore, the development of a masonry material model is highly motivated 

as in-built masonry material models do not exist at the current time for commercial finite 

element explicit solvers. 
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