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Summary. This article describes implementations of beam elements to JuliaFEM. The theory
is briefly introduced, and the usage of beam elements is introduced with a usage example that
involves a natural frequency calculation of a formula race car frame. The calculation results
were compared to results from a commercial program, and their consistency is excellent.
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Introduction

This article describes implementations, theory, and usage of beam elements in JuliaFEM.
JuliaFEM is an open-source finite element method solver written in the Julia program-
ming language, see Frondelius et al. [1]. Julia itself is a programming language designed
especially for numerical computing, including features like just-in-time code compilation
and multiple dispatch of generic functions [2].

Basically, beam element can be thought of as a reduction of a full continuum model,
which still preserves the most important characteristics of the underlying physical phe-
nomena. In academia, beams have often been described in two dimensions to introduce
the basic concepts of finite element method to students. However, since calculation mod-
els needed in practical simulation work are usually described in three dimensions, the
physics of the beam elements must be also described in three dimensions. JuliaFEM also
has more general model reduction techniques which are described in article written by
Rapo et al. [3].

In this article, we introduce a practical example of a natural frequency analysis of a
formula race car frame. The obtained results are compared to the corresponding results of
the commercial software to validate the implementation. Similar comparison of JuliaFEM
natural frequency solver with continuum elements is done by Rapo et al. [4], where the
model also had contacts, see Aho [5]. A more complicated use case, where beam elements
are used in the optimization loop to find the fuel pipe route that minimizes the given cost
function, is presented by Rapo et al. [6]. JuliaFEM also has preliminary support for shells,
see Niemi et al. [7]. For a comprehensive history of Wärtsilä’s industrial calculations, see
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Frondelius et al. [8]. Typical applications of beam elements in industrial simulation is to
model pipes and bolts in locations where there are no high requirements for the accuracy
of the results.

Theory of beams is given only briefly. For a more comprehensive description about
the theory of beam, see e.e. Crisfield [9], Belytschko [10], Oñate [11], and Zienkiewich
[12]. Beam implementations has been considered in this journal earlier by Paavola and
Salolainen [13]. For the very first FEM-based beam element implementations, see articles
written by Kapur [14], Archer [15], Thomas et al. [16], Reissner [17] and Cowper [18].

Theory
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(a) Beam in reference configuration.
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(b) Euler-Bernoulli beam theory.
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(c) Timoshenko beam theory.

Figure 1: The difference between Euler-Bernoulli and Timoshenko beam theories: in
Euler-Bernoulli beam theory, the planes normal to the midline are assumed to remain
plane and normal, whereas in Timoshenko beam theory the planes normal to the midline
are assumed to remain plane, but not necessarily normal.

Two types of theories are widely used in the development of beam elements. The most
important kinematic assumption concerns the motion of the normals to the midline of the
beam. In Euler-Bernoulli beam theory, the planes normal to the midline are assumed to
remain plane and normal, whereas in Timoshenko beam theory the planes normal to the
midline are assumed to remain plane, but not necessarily normal see figure 1. Timoshenko
beam theory can be seen as an extension to Euler-Bernoulli beam theory, allowing the
effect of transverse shear deformation. Timoshenko beam theory relaxes the normality
assumption, and the motions of an Euler–Bernoulli beam are a subset of the motions
allowed by Timoshenko beam theory [10]. To clarify this, let us study the equations of
Euler-Bernoulli beam theory and Timoshenko beam theory in a quasistatic situation. The
governing equations of Timoshenko beam are the following coupled system of ordinary
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differential equations:

d2

dx2

(
EI

dϕ

dx

)
= q (x) , (1)

dw

dx
= ϕ− 1

κAG

d

dx

(
EI

dφ

dx

)
, (2)

where L is the length of the beam, A is the cross section area, E is the elastic modulus,
G is the shear modulus, I is the second moment of area, q (x) is distributed load and κ is
called Timoshenko shear coefficient. Now, if

EI

κL2AG
� 1, (3)

the last term of equation (2) can be neglected, thus resulting

dϕ

dx
=

d2w

dx2
, (4)

and substituting this result back to equation (1) reveals the governing equations of Euler-
Bernoulli beam theory:

d2

dx2

(
EI

d2w

dx2

)
= q (x) . (5)

The main implication of the kinematic assumptions are that when using Euler-Bernoulli
beam theory, transverse shear vanishes. For this reason, Euler-Bernoulli beam theory
works well only in the case of slender beams, whereas Timoshenko beam theory, also
known as shear beam theory, works well also in the case of thick beams.

Euler-Bernoulli beam has only single dependent variable whereas the Timoshenko
beam has two dependent variables. Because second derivative of velocity appears in
the expression for the rate-of-deformation, the velocity field must be at least C1 for
Euler-Bernoulli beam. That is, the shape functions of Euler-Bernoulli beam needs higher
continuity requirements than Timoshenko beam, where it is enough to have C0 continuity.

According to Belytschko [10], the continuity requirement is the biggest disadvantage
of Euler-Bernoulli and Kirchhoff-Love theories, since C1 approximation is difficult to
construct in multi-dimensions. In the study of plates and shells, theory corresponding to
Euler-Bernoulli beam theory is Kircchoff-Love theory, having similar assumptions, and
theory of Timoshenko can be replaced with the theory of Reissner-Mindlin, respectively.

In the derivation of beam element, we assume that beam is straight with the axis of
definition in the x direction and the cross-section A in the yz plane. We also assume that
the primary stress components are the normal stress σx and shear stresses τxy and τxz
acting on each cross-section. The rest of the stress components are either neglected or
included as boundary loads to the beam.

Equilibrium equations

In the derivation of equilibrium equations, conservation of linear momentum and angular
momentum must be considered. First we study the global form of a balance of linear
momentum in the cross section A of the beam:∫

A

(∇ · σ + b) dA =
d

dt

∫
A

ρu̇ dA, (6)
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which, given using index notation, is∫
A

[
∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ bx

]
dA =

∫
A

ρü dA, (7)∫
A

[
∂τxy
∂x

+
∂σy
∂y

+
∂τzy
∂z

+ by

]
dA =

∫
A

ρv̈ dA, (8)∫
A

[
∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

+ bz

]
dA =

∫
A

ρẅ dA. (9)

The main assumption is that the the cross-section is either constant of varies slowly
enough along the x direction so that we can use∫

A

∂f

∂x
dA ≈ ∂

∂x

∫
A

f dA,

∫
A

∂f

∂y
dA =

∮
S

fny dS,

∫
A

∂f

∂z
dA =

∮
S

fnz dS, (10)

where S is the perimeter of the cross section. Thus we can write

∂

∂x

∫
A

σx dA+

∮
S

τyxny dS +

∮
S

τzxnz dS +

∫
A

bx dA = ρAü, (11)

∂

∂x

∫
A

τxy dA+

∮
S

σyny dS +

∮
S

τzynz dS +

∫
A

by dA = ρAv̈, (12)

∂

∂x

∫
A

τxz dA+

∮
S

τyzny dS +

∮
S

σznz dS +

∫
A

bz dA = ρAẅ. (13)

Rearranging terms allows us to write the equilibrium of linear momentum in a compact
form

∂P

∂x
+ qx = ρAü,

∂Sy
∂x

+ qy = ρAv̈,
∂Sz
∂x

+ qz = ρAẅ, (14)

where

P =

∫
A

σx dA, qx =

∫
A

bx dA+

∮
S

(τyxny + τzxnz) dS, (15)

Sy =

∫
A

τxy dA, qy =

∫
A

by dA+

∮
S

(σyny + τzynz) dS, (16)

Sz =

∫
A

τxz dA, qz =

∫
A

bz dA+

∮
S

(τyzny + σznz) dS. (17)

Here, P is axial force resultant and Sy and Sz are transverse shear force resultants, and
qx, qy and qz are loads in x, y and z directions, respectively.

In the same way than with the linear momentum, we can write the global form of the
balance of angular momentum in the cross section of the beam as∫

A

x× (∇ · σ + b) dA =
d

dt

∫
A

ρx× u̇ dA, (18)

where x is some arbitrary point in cross section

x =

 0
y
z

 , u̇ = θ̇ × x, (19)
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and θ̇ is the angular velocity vector. We consider the right hand side first. By using
vector identity A × (B ×C) = (A ·C)B − (A ·B)C, we can write the rate-of-change
of the angular momentum in a form

d

dt

∫
A

ρx× θ̇ × x dA =
d

dt

∫
A

ρ
[
(x · x) θ̇ −

(
x · θ̇

)
x
]

dA, (20)

which can be further expanded in Cartesian coordinate system to

d

dt

∫
A

ρ
[
(x · x) θ̇ −

(
x · θ̇

)
x
]

dA

=
d

dt

∫
A

ρ


 (y2 + z2) θ̇x

(y2 + z2) θ̇y
(y2 + z2) θ̇z

−


0(
θ̇yy + θ̇zz

)
y(

θ̇yy + θ̇zz
)
z


 dA

=

 ∫
A
ρ (y2 + z2) dAθ̈x∫

A
ρz2 dAθ̈y −

∫
A
ρyz dAθ̈z∫

A
ρy2 dAθ̈z −

∫
A
ρyz dAθ̈y

 =

 ρJθ̈x
ρIyθ̈y − ρIyz θ̈z
ρIz θ̈z − ρIyz θ̈y

 , (21)

where the definition of the components of the inertia tensor are

Iy =

∫
A

z2 dA, Iz =

∫
A

y2 dA, Iyz =

∫
A

yz dA, (22)

J = Iy + Iz =

∫
A

(
y2 + z2

)
dA. (23)

Writing the equation (18) using index notation and neglecting terms σy, σzand τyz, (see
also Zienkiewich and Taylor [12]), we finally end up to the following:∫

A

[
y ·
(
∂τxz
∂x

+ bz

)
− z ·

(
∂τxy
∂x

+ by

)]
dA = ρJθ̈x, (24)∫

A

[
z ·
(
∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ bx

)]
dA = Iyθ̈y − Iyz θ̈z, (25)∫

A

[
−y ·

(
∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ bx

)]
dA = Iz θ̈z − Iyz θ̈y. (26)

Rearranging terms allows us to write the equilibrium of angular momentum in a compact
form

∂T

∂x
+mx = ρJθ̈x, (27)

∂My

∂x
− Sz +my = ρ

(
Iyθ̈y − Iyz θ̈z

)
, (28)

∂Mz

∂x
+ Sy +mz = ρ

(
Iz θ̈z − Iyz θ̈y

)
, (29)

where

T =

∫
A

(τxzy − τxyz) dA, mx =

∫
A

(ybz − zby) dA, (30)

My =

∫
A

zσx dA, my =

∫
A

zbx dA+

∮
S

z (τyxny + τzxnz) dS, (31)

Mz = −
∫
A

yσx dA, mz = −
∫
A

ybx dA−
∮
S

y (τyxny + τzxnz) dS. (32)
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Kinematics

We assume that the cross-section of beam remains as plane in deformation process. Dis-
placement field is expressed as

ux (x, y, z) = u (x) + zθy (x)− yθz (x) , (33)

uy (x, y, z) = v (x)− zθx (x) , (34)

uz (x, y, z) = w (x) + yθx (x) , (35)

where u, v, w are displacement of the axis defining the beam and θx, θy, θz are small
rotation angles about the coordinate axes. Strains are calculated from displacement field
using small strain theory,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (36)

According to the 3D beam theory, strain components εy, εz and εyz vanish, εy = εz =
εyz = 0. The nonzero strain components are

εx =
∂ux (x, y, z)

∂x
=
∂u

∂x
+ z

∂θy
∂x
− y∂θz

∂x
, (37)

γxy =
∂ux (x, y, z)

∂y
+
∂uy (x, y, z)

∂x
=
∂v

∂x
− θz − z

∂θx
∂x

, (38)

γxz =
∂ux (x, y, z)

∂z
+
∂uz (x, y, z)

∂x
=
∂w

∂x
+ θy + y

∂θx
∂x

. (39)

The main assumption in Euler-Bernoulli beam theory is that rotations θy and θz coincide
with the slopes of the neutral axis:

θz =
∂v

∂x
, θy = −∂w

∂x
. (40)

With this assumption, nonzero strain components are thus

εx =
∂u

∂x
− z∂

2w

∂x2
− y ∂

2v

∂x2
, γxy = −z∂θx

∂x
, γxz = y

∂θx
∂x

. (41)

Elastic constitutive relations

Linear constitution relation is assumed:

σ = Dε, (42)

which is expressed in component form as

σ =

 σx
τxy
τxz

 =

 E 0 0
0 Gy 0
0 0 Gz

 εx
γxy
γxz

 = Dε. (43)

Constitutive matrix D can be deducted from the general 3D constitutive equation.
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Weak form

To derive a weak form, we define so-called generalized local strain vector ε̂ and its energetic
conjugate, generalized stress vector σ̂. For a generalized local strain vector, we aim to
write the nonzero strain tensor components εx, γxy and γxz in terms of first and second
order partial derivatives of displacement field. Thus our relation looks like

 εx
γxy
γxz


︸ ︷︷ ︸

ε

=

 1 0 0 −z −y 0
0 1 0 0 0 −z
0 0 1 0 0 y


︸ ︷︷ ︸

S1



∂u
∂x

0
0
∂2w
∂x2
∂2v
∂x2
∂θ
∂x


︸ ︷︷ ︸

ε̂

. (44)

In the same way, we define a generalized stress vector σ̂:
P
Sy
Sz
My

Mz

T


︸ ︷︷ ︸

σ̂

=

∫∫
A


σx
τxy
τxz
zσx
−yσx

τxzy − τxyz

 dA =

∫∫
A


1 0 0
0 1 0
0 0 1
z 0 0
−y 0 0

0 −z y


︸ ︷︷ ︸

S2

 σx
τxy
τxz


︸ ︷︷ ︸

σ

dA. (45)

By examining strain transformation matrix S1 and stress transformation matrix S2, it
can be seen that S1 = ST

2 , which has importance in the following step. Internal virtual
work can now be written as

δWint =

∫∫∫
V

δεTσ dV =

∫∫∫
V

(S1δε̂)
T σ dV =

∫∫∫
V

δε̂TST
1 σ dV

=

∫∫∫
V

δε̂TS2σ dV =

∫
L

δε̂T
(∫∫

A

S2σ dA

)
dx =

∫
L

δε̂Tσ̂ dx. (46)

By defining a kinematic matrix B such that ε̂ = Bu and σ̂ = D̂ε, equation 46 can be
written in a standard form

δWint = δuT ·
∫
L

BTD̂B dxu. (47)

A more detailed description about generalized quantities is given by Oñate [11].

Discretization and finite element approximation

For finite element approximation, translations and rotations must be approximated by
appropriate basis functions. The simplest 3D Euler-Bernoulli beam has two nodes. Linear
C0 continuous interpolation can be used to approximate the axial displacement u0 and
for the twist rotation θx. A cubic Hermite C1 continuous approximation must be used for
vc and wc. First we consider the C0 continuous linear interpolation for axial displacement
and twisting. Starting with a linear polynomial

p1 (ξ) = α0 + α1ξ =
[

1 ξ
] [ α0

α1

]
, (48)
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to find shape function N1 (ξ), there exists coefficients α0, α1 such that

p1 (−1) = 1 ∧ p1 (1) = 0. (49)

Substituting conditions (49) to equation (48), we get the following system of equations[
1 −1
1 1

] [
α0

α1

]
=

[
1
0

]
, (50)

and solution for coefficients α is

α =

[
1 −1
1 1

]−1 [
1
0

]
=

1

2

[
1
−1

]
, (51)

so the first linear shape function is

N1 (ξ) =
1

2

[
1
−1

] [
1 ξ

]
=

1

2
(1− ξ) . (52)

Using the same approach forN2 (ξ): there exists coefficients α0 and α1, such that p1 (−1) =
0 and p1 (1) = 1, which results

N2 (ξ) =
1

2
(1 + ξ) . (53)

Therefore, linear interpolations for axial displacement and twisting are

u (ξ) = N1 (ξ)u1 +N2 (ξ)u2, (54)

θx (ξ) = N1 (ξ) θx1 +N2 (ξ) θx2 . (55)

To construct C1 continuous interpolation polynomials, similar approach is used. Because
now the function and its first derivatives needs to be continuous, four conditions needs to
be matched, thus the polynomial is cubic:

p3 (ξ) = α0 + α1ξ + α2ξ
2 + α3ξ

3, (56)

and its derivative is
p′3 (ξ) = α1 + 2α2ξ + 3α3ξ

2. (57)

It’s important to notice, that the C1 continuity must be fulfilled in physical coordinates
and not in dimensionless coordinates. For that reason, derivatives must be taken with
respect to potentially curvilinear coordinate of beam center line s, not ξ, using chain rule:

dp3 (ξ)

ds
=

dp3 (ξ)

dξ

dξ

ds
. (58)

From here we can calculate, by knowing that ds =
√

dx2 + dy2 + dz2,

ds =
ds

dξ
dξ =

√(
dx

dξ

)2

+

(
dy

dξ

)2

+

(
dz

dξ

)2

dξ =

∥∥∥∥∂x∂ξ
∥∥∥∥ dξ, (59)

so apparently
dp3 (ξ)

ds
=

dp3 (ξ)

dξ
J (ξ)−1 , (60)
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where

J (ξ) =

∥∥∥∥∂x (ξ)

∂ξ

∥∥∥∥ (61)

is Jacobian determinant. Especially, in the case of isoparametric straight beam,

x (ξ) =

 x (ξ)
y (ξ)
z (ξ)

 = N1 (ξ)

 x1
y1
z1

+N2 (ξ)

 x2
y2
z2

 , (62)

thus ∥∥∥∥∂x (ξ)

∂ξ

∥∥∥∥ =

√(
dx

dξ

)2

+

(
dy

dξ

)2

+

(
dz

dξ

)2

=
1

2
‖x2 − x1‖ =

`(e)

2
, (63)

where `(e) is the length of the element e. Polynomial and its derivatives needs to be
evaluated in the endpoints of the dimensionless coordinate system ξ1 = −1, ξ2 = 1,
yielding

p3 (ξ1) = α0 − α1 + α2 − α3, (64)

dp3 (ξ)

ds

∣∣∣∣
ξ=ξ1

= J−1 (ξ1) (α1 − 2α2 + 3α3) , (65)

p3 (ξ2) = α0 + α1 + α2 + α3, (66)

dp3 (ξ)

ds

∣∣∣∣
ξ=ξ2

= J−1 (ξ2) (α1 + 2α2 + 3α3) . (67)

Now, shape functions can be found in the same manner than with linear interpolation.
Shape function M1 (ξ) can be found by setting the first equation 64 to equal one, and rest
of the equations to zero, that is,

α0 − α1 + α2 − α3 = 1, (68)

J−1 (α1 − 2α2 + 3α3) = 0, (69)

α0 + α1 + α2 + α3 = 0, (70)

J−1 (α1 + 2α2 + 3α3) = 0. (71)

In the same way, proceeding each shape function at time, we find the functions:

M1 (ξ) =
1

4

(
2− 3ξ + ξ3

)
, L1 (ξ) = J

1

4

(
1− ξ − ξ2 + ξ3

)
, (72)

M2 (ξ) =
1

4

(
2 + 3ξ − ξ3

)
, L2 (ξ) = J

1

4

(
−1− ξ + ξ2 + ξ3

)
. (73)

To calculate the derivatives of shape functions with respect to physical coordinates, chain
rule is needed, see again equation 60. The first derivatives are

M1 (ξ)

ds
= J−1

3

4

(
−1 + ξ2

)
,

L1 (ξ)

ds
=

1

4

(
−1− 2ξ + 3ξ2

)
, (74)

M2 (ξ)

ds
= J−1

3

4

(
1− ξ2

)
,

L2 (ξ)

ds
=

1

4

(
−1 + 2ξ + 3ξ3

)
, (75)
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and the second derivatives are

M2
1 (ξ)

ds2
= J−2

6

4
( ξ) ,

L2
1 (ξ)

ds2
= J−1

1

4
(−2 + 6ξ) , (76)

M2
2 (ξ)

ds2
= J−2

6

4
(−ξ) , L2

2 (ξ)

ds2
= J−1

1

4
( 2 + 6ξ) . (77)

The interpolations with bending shapes in v (ξ) and w (ξ) are then

v (ξ) = M1 (ξ) v1 + L1 (ξ) θz1 +M2 (ξ) v2 + L2 (ξ) θz2 , (78)

w (ξ) = M1 (ξ)w1 − L1 (ξ) θy1 +M2 (ξ)w2 − L2 (ξ) θy2 . (79)

The displacement interpolation can be written conveniently using matrix notation as

u (ξ) =


u
v
w
θ

 =
2∑
i=1


Ni 0 0 0 0 0
0 Mi 0 0 0 Li
0 0 Mi 0 −Li 0
0 0 0 Ni 0 0



ui
vi
wi
θxi
θyi
θzi

 =
2∑
i=1

Niai. (80)

Generalized local strain is

ε̂ =


∂u
∂x
∂2w
∂x2
∂2v
∂x2
∂θx
∂x

 =
2∑
i=1


∂Ni

∂x
u

∂2Mi

∂x2
wi − ∂2Li

∂x2
θyi

∂2Mi

∂x2
vi + ∂Li

∂x2
θzi

∂Ni

∂x
θxi



=
2∑
i=1


∂Ni

∂x
0 0 0 0 0

0 0 ∂2Mi

∂x2
0 −∂2Li

∂x2
0

0 ∂2Mi

∂x2
0 0 0 ∂2Li

∂x2

0 0 0 ∂Ni

∂x
0 0



ui
vi
wi
θxi
θyi
θzi


=

2∑
i=1

Biai (81)

Stiffness matrix is

K̂
(e)
ij =

∫
l(e)
BT
i DBj dx. (82)

Force vector is

f̂
(e)
i =

∫
l(e)
Nit dx. (83)

Finally, matrices needs to be transformed to global coordinate systems with transforma-
tion

K
(e)
ij = T T

i K̂
(e)
ij Tj (84)

f
(e)
i = T T

i f̂
(e)
i (85)

T =
[
e1 e2 e3

]
, (86)

e1 =
x1 − x2

‖x1 − x2‖
, (87)

where x1 and x2 are the coordinate vectors of the element end nodes. Unit vectors e2
and e3 are defined along the principal directions y and z at each node, respectively.
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Usage example

JuliaFEM is used by running a JuliaFEM input file, which is a normal Julia script includ-
ing all details of the analysis. In this usage example, an input file is presented and ex-
plained row by row. The example is a natural frequency calculation of a three-dimensional
frame structure using beam elements. Only the frame geometry, including node and ele-
ment sets, is imported from the Abaqus input file. All other necessary details are defined
in the JuliaFEM input. The orientation of beam elements is a key factor when using
beam elements. The orientations are defined by normal and tangent directions. The tan-
gent is automatically calculated from coordinates, but the normal must be defined to the
JuliaFEM input by the user.

The example structure is a formula race car frame from Formula Student Oulu [19].
The Formula student Oulu race car is presented in Figure 2. The geometry of the example

Figure 2: Picture of the Formula Student Oulu race car

model is the same as that of the actual race car used by the team, but the cross-section
and material values are simplified. All pipes are considered as steel pipes having diameter
of 12 mm and thickness of 2.5 mm. The example frame model is presented in Figure 3.
For pipes, the moment of inertia is the same in all directions. In such situations, functions
and loops can be conveniently used in JuliaFEM inputs. When using packages in Julia,
it must always be stated which packages will be used. FEMBeam is a package itself but
it is included in JuliaFEM; thus, we only need to write using JuliaFEM.

1 using JuliaFEM

The first thing needed for this calculation is the mesh. The beam frame mesh in this case
includes an Abaqus input file that we want to import to JuliaFEM. Mesh is imported
using abaqus read mesh()-function from AbaqusReader, which is also a package included
in JuliaFEM. Before reading the mesh, a file path to the location of the mesh file must
be defined. All basic information about the mesh is imported to JuliaFEM, including
node sets and element sets. The mesh is imported to variable mesh, which comprises a
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Figure 3: Frame model of the Formula Student Oulu race car.

number of dictionaries. These dictionaries can be called by functions, for example, to
create elements or boundary conditions to the problem.

3 datadir = Pkg.dir("JuliaFEM", "examples", "formula_frame")

4 mesh = abaqus_read_mesh(joinpath(datadir, "formula_frame.inp"))

The elements for the problem are created using create elements () -function. With inputs
mesh and ”FRAME”, the element set called ”FRAME” from the mesh is used to create
beam elements. The material and cross-section values are defined using the update!()
-function. In this case, all beam elements have the same values and they can be defined
all at once.

5 beam_elements = create_elements(mesh, "FRAME")

6 update!(beam_elements, "youngs modulus", 210.0e3)

7 update!(beam_elements, "shear modulus", 80.77e3)

8 update!(beam_elements, "density", 7.800e-9)

9 update!(beam_elements, "cross-section area", 176.715)

10 update!(beam_elements, "moment of inertia 1", 11320.778)

11 update!(beam_elements, "moment of inertia 2", 11320.778)

12 update!(beam_elements, "polar moment of inertia", 22641.556)

The update!() -function is also used to define normals for the beam elements. As pre-
viously mentioned, the moment of inertia is the same in every direction when the cross-
section is circular. This means that the normals can be chosen freely as long as they form
an orthogonal basis where one direction is the tangent of the beam. This for-loop finds
a suitable normal direction vector for every beam element. In the term k, the function
indmax() finds the index of the maximum element in a collection.
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13 for element in beam_elements

14 X1, X2 = element("geometry", 0.0)

15 t = (X2-X1)/norm(X2-X1)

16 I = eye(3)

17 k = indmax([norm(cross(t, I[:,k])) for k in 1:3])

18 n = cross(t, I[:,k])/norm(cross(t, I[:,k]))

19 update!(element, "normal", n)

20 end

21 %

In this usage example, four nodes around the front wheel and six nodes around the rear
wheel are fixed. The boundary conditions in JuliaFEM are handled by creating the
boundary condition elements which in this case are one node Poi1-typed elements. The
geometry and the wanted boundary conditions must be defined using update()-function.
In this case, all three displacements and rotations are fixed to zero. The for-loop is used
to save some space and keep the syntax cleaner.

21 bc_elements = [Element(Poi1, [j]) for j in mesh.node_sets[:Fixed]]

22 update!(bc_elements, "geometry", mesh.nodes)

23 for i=1:3

24 update!(bc_elements, "fixed displacement $i", 0.0)

25 update!(bc_elements, "fixed rotation $i", 0.0)

26 end

In JuliaFEM, all different types of elements will be added to a problem that will be solved.
The problem is created using Problem()-function; in this case, the problem type is Beam
with the name ”frame” and the third value given for the function is the number of degrees
which in this case is six. The beam elements and boundary condition elements are added
to the problem using the add elements!()-function.

27 frame = Problem(Beam, "frame", 6)

28 add_elements!(frame, beam_elements)

29 add_elements!(frame, bc_elements)

To calculate the natural frequencies for the beam frame, only one step is needed, which
is modal analysis. The step is created using the Analysis ()-function. The number of
calculated eigenvalues can be set by defining step . properties .nev. Problems are added to
the step using add problems!()-function. Results can be written to a Xdmf file [20], which
is a file format that can be processed with, for example, Paraview. The file is created
using the Xdmf-function and in this example, it is created on the same folder with the
Abaqus input file.

30 step = Analysis(Modal)

31 step.properties.nev = 5

32 add_problems!(step, [frame])

33 xdmf = Xdmf(joinpath(datadir, "f_frame_results"); overwrite=true)
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34 add_results_writer!(step, xdmf)

35 run!(step)

36 close(xdmf.hdf)

After analysis, the eigenvalues are stored in step properties step . properties . eigvals and
the eigenfrequencies are simply calculated by taking the square root of the eigenvalues
and dividing it by two times pi. The wanted output can be printed with the println ()-
function. round()-function can be used to show only the required number of decimals.

37 eigvals = step.properties.eigvals

38 freqs = sqrt(eigvals)/(2*pi)

39

40 println("Five lowest natural frequencies [Hz]:")

41 println(round.(freqs, 2))

Results

The outputs of the println -functions presented above are as follows.

Five lowest natural frequencies [Hz]:

[54.13, 73.89, 113.07, 144.58, 163.49]

Moreover, the eigenmodes were animated using Paraview and analyzed. With given
boundary conditions, the eigenmodes of the usage example were just as predicted. The
biggest displacement occurs on top of the main hoop of the race car. The first eigenmode
is presented in Figure 4.

Natural frequencies were also calculated using a commercial program to obtain com-
parison results. The same input file was used with same material and cross-section values.
The only difference in the input was the defining of the beam orientations, which was done
by hand with the Abaqus CAE. Defining all beam orientations by hand is inconvenient
and leads to some inaccuracy.

The five lowest natural frequencies from both JuliaFEM and commercial program
results were compared. The differences in frequencies are under 1 Hz, which is caused by
the difference in defining beam orientations. Moreover, the eigenmode animations from
both JuliaFEM and the commercial program were compared. Both programs showed the
same eigenmodes.

Conclusions

The implementation of beam elements in JuliaFEM was introduced with an usage exam-
ple. The usage example model is a complex 3D beam frame with a high number of beam
elements being oriented in almost every possible direction. The calculation results were
compared to results from commercial FEM program. The results support each other, and
it can therefore be stated that our implemented beam element works accurately.

One of JuliaFEM’s biggest strengths is that JuliaFEM inputs are normal Julia scripts
wherein the user can use functions and loops to get the task done. This strength is
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Figure 4: The first eigenmode of the structure.

emphasized in calculations like the usage example presented herein where functions and
for-loops can be used. Defining the beam element pipe cross-section orientations is just one
good example of using scripting in JuliaFEM inputs. Using these types of functionalities
may require some programming skills but the programming language used is simple and
easy to learn even for first timers. One reason these type of usage examples are made is
because studying these usage examples is an efficient way to learn the basics.
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