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Thermal transient finite element computation of a 

mixing Tee by utilizing CFD results 

Qais Saifi1 and Otso Cronvall 

Summary. Thermal distribution and fluctuation in any piping component due to turbulent 
mixing of flows with different temperatures vary greatly. Usually, computational fluid dynamics 
(CFD) tools are used for estimation of flows in piping components. Fatigue that results from 
fluctuating thermal mass flow across the components can be computed by coupling the CFD 
results with structural mechanics based finite element (FE) results. However, this procedure is 
laborious and computationally very expensive. A fluid temperature function has been developed 
in this paper as a function of internal wall coordinates and time by interpolating experimental or 
CFD results. Bicubic interpolation function has been used for accurate interpolation. Finally, a 
thermal transient FE analysis for an actual Tee from a nuclear power plant (NPP) was performed 
by using the developed fluid temperature function and interpolated CFD results.  
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Introduction  

Turbulent flow is a common phenomenon in piping components, such as straight pipes, 

pipe bends, reducers and Tees of light water reactor (LWR) plants. Computational fluid 

dynamic (CFD) tools are used extensively to estimate temperature distributions and 

fluctuations of the fluids inside the components. When two water flows with high- and 

low-temperature meet, which occurs e.g. in mixing Tees, complex thermal fluctuations 

ensue. Temperature fluctuation through pipe wall and consequent stress fluctuations 

occur due to mixing of high- and low-temperature fluids. Thus, as discussed in [7], 

detailed thermal fatigue analysis is required for: ensuring fatigue limit is not exceeded, or 

in case it is exceeded then preforming fatigue crack growth analysis for initiated crack to 

estimate the remaining life of the component before leak or break.  

Transient thermal analysis of the components needs to be performed for computation 

of temperature distribution through the solid wall. Finite element (FE) analysis codes are 
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commonly used for such computations, while fluid temperature distributions and heat 

transfer coefficient at the internal surface of the components are provided. 

The temperature distributions at the inner surface of the components can be solved 

with CFD analysis, as mentioned above. Usually, the coupling of the thermal transient 

CFD and FE analyses is computationally very expensive. Similar coupling has been 

performed in [5], where in the fluid-solid interface the nodes of the structural model and 

fluid model coincide. Therefore, no approximation of the heat transfer between the fluid 

and the structure was needed. Similar approach has been tried on an actual Tee from a 

NPP with very complex geometry and loads [1]. However, due to complexity of the model 

the analysis had to be stopped as the computational time had increased substantially. 

Thus, a method has been developed in this study to obtain the fluid temperature at the 

wall as a function of inner wall coordinate and time from the CFD results and then 

perform thermal transient FE simulation through solid wall. This method greatly reduces 

the computational time, as full CFD-FE coupling is not needed and at the inner surface 

the fluid model and the structural model meshes do not need to be compatible. A 

sinusoidal interpolation function has been developed from CFD results to obtain the fluid 

temperature as a function of inner wall surface coordinates and time. In order to enhance 

the accuracy, bicubic interpolation function has been used for processing the CFD results. 

More simplified approach has been applied for computation of fluid temperature and 

temperature through solid wall in mixing Tees e.g. in [6]. However, it is not applicable 

for very complex turbulence in three dimensions.   

Furthermore, CFD temperature results for an actual mixing Tee are provided by [1], 

where thermal mixing occurred due to meeting of hot and cooler water flows. Thermal 

transient FE simulation of the mixing Tee is preformed through wall, where the heat 

transfer problem is governed by convection in the fluid-solid interface and by conduction 

through the solid wall. Thus, the developed sinusoidal interpolation function was used in 

the FE simulation to determine the fluid temperature at the fluid-solid interface by 

utilizing the CFD results.  

Modelling methods  

Flow temperature in an LWR piping component can fluctuate with respect to time. 

Fluctuating fluid temperature as a function of time can be described with a sine function. 

The simplest form of a fluid temperature equation in LWR piping components as a 

function of time is given as: 

 

where 𝑇 is temperature, 𝑡 is time, 𝑇𝑚 is mean temperature, 𝐴 is amplitude and 𝑓 is 

frequency of temperature fluctuation. Equation (1) is presented graphically in Figure 1 

below. 

 

 

  

𝑇(𝑡) =  𝑇𝑚 + 𝐴 × sin(2𝜋𝑓𝑡) 

 (1) 
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Figure 1. Sinusoidal fluid temperature function. 

 

Equation (1) assumes in hoop direction the same temperature distributions and 

fluctuations for a piping component with given values for 𝑇𝑚, 𝐴 and 𝑓. Temperature 

distributions and fluctuations of the fluid inside the components in actual conditions are 

very seldom evenly distributed. Usually, when two water flows with different 

temperatures mix turbulently, temperature distributions and fluctuations vary greatly 

locally. Consequently, it is essential to define 𝑇𝑚 and 𝐴 as a function of locations across 

the inner surface of the components. Throughout this paper the word “space” will be used 

to replace the phrase “locations across the inner surface of the components”.  Equation 

(1) needs to be defined as a function of both space and time. Space dependent 𝑇𝑚 and 𝐴 

for given thermal mass flow conditions can be specified from measurements or CFD 

analysis results. Interpolation functions for 𝑇𝑚 and 𝐴 are developed from the measured or 

CFD analysis results. 

Before developing these functions, the geometry of the inner surface of the 

components needs to be simplified. The components mentioned in section 1 have mostly 

cylindrical shapes, thus they are described in three-dimensional (3D) space. Due to 

simplifications contained by the interpolation functions, 3D cylindrical surface must be 

transformed to a two dimensional (2D) flat sheet. Transformation of 3D coordinates of a 

cylindrical surface to 2D Cartesian coordinates is shown in Figure 2. The length of the 

cylinder along 𝑧-axis remains the same as shown in Figure 2, the circular length converts 

to straight line as follows: 

 

where 𝑟, 𝑥, 𝑦, 𝑠 and 𝜃 are shown in Figure 2. Now, any information in 𝑥, 𝑦 and 𝑧 

coordinates of a cylindrical surface can be fully transformed to the corresponding 2D 

coordinates 𝑧 and 𝑠. Average temperature and root mean square (RMS) distributions for 

 

𝑟 =  √𝑥2 + 𝑦2 

(2) 

 𝜃 =  sin−1
𝑦

𝑟
 

(3) 

𝑠 = 𝑟 × 𝜃 = √𝑥2 + 𝑦2 × 𝜃 

(4) 
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a given flow across a cylindrical surface can be determined from measurements or CFD 

analysis results. The following relation between RMS value, 𝑟𝑚𝑠, and amplitude, 𝐴, 

exists:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Transformation of 3D coordinates of a cylindrical surface to 2D coordinates. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Discretization of a 2D surface into number of rectangles with unequal size. 

 

Measured or CFD temperature and RMS results of a cylindrical component are used 

to formulate interpolation functions as a function of coordinates 𝑧 and 𝑠. In this study, 

bicubic interpolation function is proposed, which requires discretization of a 2D surface 

to a finite number of rectangles. The sizes of the rectangles need not to be equal, as shown 

in Figure 3.  

Bicubic interpolation function 

Bicubic interpolation function for a 2D discretized surface of Figure 3 is given as follows: 

 

𝐴 = √2𝑟𝑚𝑠 

(5) 

𝑠 𝑠 

𝑧 𝑧 

∆𝑠 

∆𝑧 
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where 𝑓 is average temperature or RMS function, 𝑠 and 𝑧 are coordinates shown in Figure 

3, whereas 𝑎𝑖𝑗 is coefficient for a given 𝑠𝑖𝑧𝑗. There are 16 𝑎𝑖𝑗 coefficients in equation 

(6). If function values, 𝑓, are known at the corners of the rectangles of Figure 3, 𝑎𝑖𝑗 

coefficients for each rectangle can be determined separately. For a discrete rectangle, 16 

equations are needed to determine the 𝑎𝑖𝑗 coefficient values. Therefore, the following 

derivatives are also needed to be known at each corner of the discrete rectangle to form 

the 16 equations: 

 

The derivatives of equations (7) to (9) can be determined numerically with finite 

difference method (FDM) as follows: 

where ∆𝑧 and ∆𝑠 are horizontal and vertical lengths of a discretized rectangle, 

respectively, as shown in Figure 3. Bicubic interpolation function for each discretized 

rectangle of Figure 3 can be defined separately, by numerically solving 𝑎𝑖𝑗 coefficient 

values with equations (6) and (10). 

  

𝑓(𝑠, 𝑧) =  ∑ ∑ 𝑎𝑖𝑗𝑠𝑖𝑧𝑗

3

𝑗=0

3

𝑖=0

 

(6) 

  

 
𝜕𝑓

𝜕𝑠
= ∑ ∑ 𝑎𝑖𝑗𝑖𝑠𝑖−1𝑧𝑗

3

𝑗=0

3

𝑖=1
 

 (7) 

 
𝜕𝑓

𝜕𝑧
= ∑ ∑ 𝑎𝑖𝑗𝑠𝑖𝑗𝑧𝑗−1

3

𝑗=1

3

𝑖=0
 

(8) 

𝜕2𝑓

𝜕𝑠𝜕𝑧
= ∑ ∑ 𝑎𝑖𝑗𝑖𝑠𝑖−1𝑗𝑧𝑗−1

3

𝑗=1

3

𝑖=1
 

(9) 

  
𝜕𝑓

𝜕𝑠
≈

𝑓(𝑠 + ∆𝑠, 𝑧) − 𝑓(𝑠 − ∆𝑠, 𝑧)

2∆𝑠
 

(10) 
𝜕𝑓

𝜕𝑧
≈

𝑓(𝑠, 𝑧 + ∆𝑧) − 𝑓(𝑠, 𝑧 − ∆𝑧)

2∆𝑧
 

 

𝜕2𝑓

𝜕𝑠𝜕𝑧
≈

𝑓(𝑠 + ∆𝑠, 𝑧 + ∆𝑧) − 𝑓(𝑠 + ∆𝑠, 𝑧 − ∆𝑧) − 𝑓(𝑠 − ∆𝑠, 𝑧 + ∆𝑧) + 𝑓(𝑠 − ∆𝑠, 𝑧 − ∆𝑧)

4∆𝑠∆𝑧
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Average temperature and RMS functions 

The interpolation function introduced in section 2.1 will be used to develop space 

dependent 𝑇𝑚(𝑥, 𝑦, 𝑧) and 𝑟𝑚𝑠(𝑥, 𝑦, 𝑧) functions for a thermal mass flow in a cylindrical 

piping component. The following average temperature and RMS functions are developed: 

 

where 𝛿 is equal to 1 or 0, 𝑠 is given as a function of 𝑥 and 𝑦 in equations (2) to (4), 

whereas 𝑏𝑖𝑗 and 𝑐𝑖𝑗 are coefficients of the bicubic interpolation functions. The coefficients 

𝑏𝑖𝑗 and 𝑐𝑖𝑗 can be found with the same procedure as explained in section 2.1. Independent 

of the number of discretized rectangles in a surface, for a given point with 𝑥, 𝑦, 𝑧 

coordinates, 𝛿 is 1 only for one rectangle, where 𝑥, 𝑦, 𝑧 coordinates fall in the interval of 

that rectangle. The values of 𝛿 for the rest of the rectangles are 0. Equation (1) can be 

defined as a function of space and time by inserting equations (5), (11) and (12) into it, 

as follows: 

 

Equation (13) presents the fluid temperature as a function of time and coordinates of a 

3D cylindrical surface. A critical frequency, 𝑓, should be chosen for equation (13) as 

based on experimental or CFD results. Precisely, the same approach can be used to 

develop a fluid temperature function for other components by transforming their surface 

from 3D to 2D and then discretizing the surface, as mentioned earlier. 

Application of fluid temperature function 

The fluid temperature function expressed by equation (13) will be utilized in the following 

in a thermal transient FE analysis of a Tee, using available CFD results. Outer diameter 

and wall thickness of the Tee are 406.4 mm and 21.41 mm, respectively. The material of 

the Tee is austenitic stainless steel AISI 304L.  

 

Processing CFD results 

CFD results from ref. [1] for a thermally stratified flow of 10 kg/s in a Tee are used. Ansys 

Fluent code [4] was used for the CFD analyses. Figure 5 shows the distributions and 

transformations of the CFD results in 3D and 2D, where the hollow cylinder consists of 

𝑇𝑚(𝑥, 𝑦, 𝑧) =  𝛿 ∑ ∑ 𝑏𝑖𝑗𝑠𝑖𝑧𝑗

3

𝑗=0

3

𝑖=0

 

 (11) 

𝑟𝑚𝑠(𝑥, 𝑦, 𝑧) =  𝛿 ∑ ∑ 𝑐𝑖𝑗𝑠𝑖𝑧𝑗

3

𝑗=0

3

𝑖=0

 

(12) 

 𝑇(𝑥, 𝑦, 𝑧, 𝑡) =  𝑇𝑚(𝑥, 𝑦, 𝑧) + √2𝑟𝑚𝑠(𝑥, 𝑦, 𝑧) × sin(2𝜋𝑓𝑡) 

 (13) 
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50665 nodes. Therein, the temperature and the mass flow of the cold water are 20 ˚C and 

10 kg/s and, respectively, those of the hot water are 273 ˚C and 55 kg/s, see Figure 4.  

 

 

 

Figure 4. Inlet flow velocities and temperatures for CFD simulation. 

 

  

  

Figure 5. CFD results of average temperature and RMS distributions in unit of °C in a pipe 

component and transformation of 3D cylindrical surface to 2D surface in meters.  
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Figure 5 shows temperature and RMS distributions on the inner surface of the 

cylindrical pipe component, and transformation from 3D to 2D surface with maintaining 

temperature and RMS distributions. According to section 2, the 2D surface must be 

discretized to a number of rectangles for generating the interpolation functions. Exactly 

the same surface discretization must be used in generating interpolation functions for both 

the average temperature and RMS, which is because these interpolation functions will be 

inserted in equation (13) that presents only a rectangle for a given point in 𝑥, 𝑦 and 𝑧 

coordinates. This procedure not only prevents the overlapping of the interpolation 

functions, but it also reduces substantially the computational time in a thermal transient 

FE analysis. The discretization of the 2D surface is shown in Figure 5, with both average 

temperature and RMS distributions. 

The surface has been discretized to equal size rectangles for simplicity. For those 

regions which are not covered by discretized rectangles, a temperature function has been 

extrapolated. The interpolation functions used in this paper are limited to regular 

rectangles with straight lines, see section 4. Thus, regions resulting with irregular shape 

rectangles are not covered for interpolation. It should be noted in Figures 4 and 5 that 

only half of the cylindrical pipe component across the length has been plotted, which is 

due to symmetry. The symmetry condition is also applied to the thermal transient FE 

analysis. 

 

 
 
Figure 6. Discretization of the 2D surface in unit of m into equal number of rectangles for 

generating average temperature and RMS in unit of °C interpolation functions. 

 

FE analysis 

The inner surfaces of the hollow cylinder shown in Figures 4 and 5 are actually a portion 

of a symmetric Tee. The thermal transient FE analysis of the Tee has been performed 

with a general-purpose FE code Abaqus [4]. Element type DC3D8 has been used, which 

is a 3D solid element used for thermal analyses. Fluid temperature function has been 

applied to the inner surface of the Tee in Abaqus model with a developed FORTRAN 

subroutine. Temperature data provided in Figures 4 and 5 are extrapolated to the full Tee 

model. A frequency of 𝑓 = 1𝐻𝑧 is assumed for fluid temperature fluctuation in equation 

(13), while average temperature and amplitude are determined by interpolating data of 

Figure 5, as explained earlier. Heat transfer coefficient values are provided. Thermal 

loading is determined at the inner wall surface with Abaqus, as boundary convection 

vector, by given fluid temperature and heat transfer coefficient value. Since the Tee is 
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symmetric, only half of it has been simulated, and for cut surfaces symmetry boundary 

conditions have been utilized.  

Temperature dependent material properties have also been used in the analysis. 

Material properties that were needed in the FE analysis for solving the heat transfer 

problem due to conduction through solid wall are, thermal conductivity, heat capacity and 

density of the solid pipe.  

According to equation (13), temperature fluctuates around the average temperature 

with an amplitude of √2𝑟𝑚𝑠 for a given point across the internal surface. Thus, for 𝑓 =
1𝐻𝑧, temperature distribution across the Tee is equal to the average temperature 

distribution at 𝑡 = 0𝑠, 0.5, 1𝑠, 1.5𝑠, and so on. Temperature distribution across the Tee is 

at maximum at 𝑡 = 0.25𝑠, 1.25𝑠, 2.25𝑠, and so on. The minimum temperature 

distribution across the Tee occurs at 𝑡 = 0.75𝑠, 1.75𝑠, 2.75𝑠, and so on.  

Figures 7 and 8 present the thermal transient FE analysis temperature results for the 

Tee at a time when the temperature distribution in the inner surface is equal to the average 

temperature distribution. The fluid temperature at extra inner parts of the Tee, which are 

not shown in Figures 4 and 5, are extrapolated. 

Figure 9 presents the FE temperature fluctuation results at a node located at the inner 

surface of the Tee in the vicinity of high RMS distribution, see Figures 4 and 5 for the 

RMS distribution. At this location after 70s the maximum temperature was 159.4°C, the 

minimum temperature was 101°C and the average temperature was 130.2°C. 

Discussion and conclusion   

A simplified sinusoidal fluid temperature function has been developed to describe the 

complex fluid temperature distribution for a cylindrical piping component as a function 

of space and time. CFD or experimental thermal results can be utilized to obtain the fluid 

temperature function for a given flow. Discretization of a surface under a thermal mass 

flow is produced with regular rectangular shapes. Discretization of the surface can be 

achieved with other four cornered shapes too. This requires generalized curvilinear 

coordinate transformation of grids to uniform rectangles, see ref. [2]. The analysis 

presented in this paper uses discretized flow surface with equally sized grids. However, 

there is no restriction on the refinement of the discretization at critical areas.  

The fluid temperature function developed in this paper is a sufficiently accurate 

approach for analyses governed by thermal fatigue, fatigue crack growth and other fatigue 

cases due to fluid temperature fluctuations in piping mixing points. Average temperature 

and RMS distributions are well formulated with bicubic interpolation function. Critical 

frequencies should be determined for a turbulent flow and inserted into the fluid 

temperature function for estimation of crack growth due to fatigue. This method provides 

a realistic spectrum of fluid temperatures across the component walls. 

The computational time taken by this analysis is substantially less than the CFD-FE 

coupling would have taken. The number of nodes in the CFD results shown in Figures 5 

and 6 is 50665, while the number of nodes in the discretized surface, see Figure 6, is only 

131, which is less than 0.3 % of the number of nodes used in the CFD analysis.  
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Figure 7. FE results for temperature distribution in unit of °C at inner surface at time 𝑡 = 100 𝑠. 
 

 
Figure 8. FE results for external temperature distribution in unit of °C at time 𝑡 = 100 𝑠. 

 

Figure 9. Temperature response in °C as a function of time for a selected node from FE results. 
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