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Summary. The sensitized principle of virtual work is applied to modify the stiffness matrix of 
the ordinary four-node rectangular element by sensitizing terms. The sensitizing parameter 
values are determined by the single-element strain energy test. The reference solutions used are 
of bending mode types and their application removes the so-called parasitic shear behavior. A 
stiffness matrix of good quality is obtained corresponding exactly to an earlier formulation 
using incompatible modes.  
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Introduction 

The four-node rectangular element sketched in Figure 1 is one of the first elements 

applied in structural mechanics, e.g. [1]. 

  

Figure 1. Eight degree of freedom linear (also called bilinear) element. 

The assumed displacement components in the x- and y-directions are of the forms 

 1 2 3 4u x y xy       , (1) 

 1 2 3 4v x y xy       . (2) 
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Standard manipulations give then the matrix type representation 

  1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

N N N Nu

N N N Nv

  
   

   
a  (3) 

with the nodal displacement column matrix 

    
T

1 1 2 2 3 3 4 4u v u v u v u va  (4) 

and with the shape functions 

 

     

     

1 2

3 4

1 1
, ,

4 4

1 1
, .

4 4

N a x b y N a x b y
ab ab

N a x b y N a x b y
ab ab

     

     

 (5) 

Details concerning the application of this element in plane stress or plane strain 

elastic cases are reported e.g. in [2] and [3]. Reference [2] explains also in a very 

illustrative way certain deficiencies (for example the so-called parasitic shear) of the 

element and ways to improve its behavior. A more detailed discussion about the effect 

of domain slenderness, different locking phenomena, and properties of some 

formulations aiming at improved performance is available in [3]. In the following, we 

present still another attempt to improve the element behavior based now on the 

sensitized principle of virtual work. 

Sensitized finite element method 

The sensitized principle of virtual work is described in reference [4] and in fact 

especially in the two-dimensional continuum case so the formulas presented are directly 

applicable here. We therefore just record the necessary expressions. 

We define 

          , , , ,

x x
x x

y y
y y

xy xy

b tu

b tv

 

 

 

   
               

             
            

      

u b t σ ε  (6) 

and further 

     ε S u , (7) 

where 

  

/ 0

0 /

/ /

x

y

y x

  
 

  
 
     

S . (8) 
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The local equilibrium equations can be written as 

        E σ b 0  (9) 

with 

    
T / 0 /

0 / /

x y

y x

    
   

    
E S . (10) 

The sensitizing parameter matrix 

   11 12

21 22

 

 

 
  
 

τ  (11) 

can be taken symmetric ( 21 12  ). The finite element displacement approximation is 

written as 

     u N a . (12) 

Differing from (3), here we consider temporarily the whole structure and thus the 

column matrix { }a  is considered to contain all the nodal displacements of the structure 

and [ ]N  is thus the corresponding global shape function matrix. We assume elastic 

material with the constitutive relation 

     σ D ε . (13) 

We introduce the shorthand notations 

     B S N  (14) 

and 

      C E D B . (15) 

The following finite element equations are arrived at 

     K a f , (16) 

where 

                
T T

O S d d
A A

A A    K K K B D B C τ C  (17) 

and 

                   
T T T

O S d d d
A s A

A s A      f f f N b N t C τ b . (18) 
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The subscripts O and S refer to the terms emerging from the ordinary and sensitizing 

parts of the formulas, respectively. 

The rectangular element 

We now return to the element discussed in the "Introduction" section. The finite element 

formulas given in the preceding section can be used also for an element by just taking 

into account the correct sizes of the corresponding matrices. However, we then cannot 

speak any more about element equations but of the element contributions 

        F K a f  (19) 

to the global discrete equations. For instance, the column matrix { }a  in (19) is now the 

one in (4). 

We consider here the plane stress case and isotropic material so in matrix [ ]D  in 

formula (13) 

 
11 22 33 21 122 2

31 13 32 23

, , ,
2(1 )1 1

0, 0,

E E E
D D D D D

D D D D



 
    

 

   

 (20) 

where E is Young's modulus and   Poisson's ratio considered as constants in an 

element.  

Straightforward calculations give 

  

0 0 0 0
1

0 0 0 0
4

b y b y b y b y

a x a x a x a x
ab

a x b y a x b y a x b y a x b y

      
 

      
 
             

B  (21) 

and 

  
0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 08 (1 )

E

ab 

  
  

   
C . (22) 

It is seen that the terms in the [ ]C -matrix are here constants with respect to position. 

Matrices O[ ]K  and S[ ]K  for the element are conveniently evaluated say by the 

Mathematica program [5]. For the former matrix we record here just as samples four 

typical terms: 

 

       

     

O O11 122 2

O O13 142 2

3
4 2 1 , 1 ,

212(1 ) 12(1 )

3 9
4 1 , .

2 212(1 ) 12(1 )

E b a E
K K

a b

E b a E
K K

a b

 
 

 
 

 
     

   

   
        

     

 (23) 

The latter matrix obtains a simple form 
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  
 

22 21 22 21 22 21 22 21

12 11 12 11 12 11 12 11

22 21 22 21 22 21 22 21

2
12 11 12 11 12 11 12 11

S 2
22 21 22 21 22 21 22 21

12 11 12 11 12 11 12 11

22 21 22 21 22

16 1

E

ab

       

       

       

       

       

       

    

   

   

   

   


   

   

   

K

21 22 21

12 11 12 11 12 11 12 11

  

       

 
 
 
 
 
 
 
 
 
 
 
     

. (24) 

This stiffness matrix has a rather peculiar structure. A short study shows that if the 

nodal displacements are evaluated from linear displacement expressions like 

u x y      or v x y      (with arbitrary values for the constants  ,   and 

 ), the resulting nodal forces vanish. The ordinary element with stiffness matrix O[ ]K  

is known to pass the patch test (convergence checking test A or B in reference [6]). 

When the contributions from the sensitized stiffness matrix S[ ]K  are included in the 

patch test, the nodal equilibrium equations do not get any non-zero additions. Thus, the 

patch test will be passed for arbitrary values of the sensitizing parameters 11 , 22  and 

21 12  . This is an important result which obviously gives much freedom for the 

selection of the parameter values. 

Strain energy test 

The idea behind the strain energy test is also explained in [4]. The strain energy of the 

element evaluated analytically from a reference solution is given by 

     
T

A

1
d d

2

b a

b a
U x y

 
   ε D ε . (25) 

The strain energy evaluated from the corresponding element nodal displacement values 

is 

               
T T T

N O S

1 1 1

2 2 2
U   a K a a K a a K a   (26) 

The test is 

 N AU U . (27) 

This gives an equation containing the sensitizing parameters. 

Following the presentation in [2], we consider first specifically the "bending mode" 

 , 0
x y

u u v
ab

  , (28) 
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where u  is the magnitude of the horizontal displacement at the element nodes. The 

corresponding deformation shape is shown in Figure 2 (a). 

  

Figure 2 (a). Deformed element shape due to nodal displacements u . (b) The corresponding beam 

segment deformation in pure bending. 

However, as explained in [2], we would like to have an actual beam bending mode as in 

Figure 2 (b) with the solution 

 
2 2

2 2
, (1 ) (1 )

2 2

x y a x b y
u u v u u

ab b aa b
     . (29) 

Thus, our conclusion here is simply that we take (29) as one reference solution. 

As again explained in [2], we can consider additionally the vertical "bending mode"  

 0,
x y

u v v
ab

   (30) 

with v  as the nodal displacements in the vertical direction. Now the corresponding 

beam segment pure bending solution becomes 

 
2 2

2 2
(1 ) (1 ) ,

2 2

b y a x x y
u v v v v

a b abb a
     . (31) 

This is taken as a second reference solution. 

In the first case equation (27) becomes 

 
 

   

2 2 2 2 2 2
22

22

2 1 2

33 1 2 1

E b a u E u Ebu

aab ab

 

 

  
   

 
 (32) 

and in the second case 

 
 

   

2 2 2 2 2 2
11

22

2 1 2

33 1 2 1

E a b v E v Ebv

bab ab

 

 

  
   

 
. (33) 

The solutions are correspondingly 
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   

 

2 2 2

22

2 1 1 2

3 1

a b

E

  




   
  


, (34) 

 
   

 

2 2 2

11

2 1 1 2

3 1

b a

E

  




   
  


. (35) 

Additional reference solution (or solutions) would be needed to determine the 

parameter 21 12  . In this study we have just simply used the selection (as explained 

above, from the point of the convergence patch test we are allowed to take any value) 

 21 12 0   . (36) 

We now substitute the values (34), (35) and (36) into (24) to obtain the final 

sensitizing part of the stiffness matrix. For instance, we obtain 

  
 

 
 2 2

S S11 222 2

1 1
,

2 212(1 ) 12(1 )

E b a E a b
K K

a b b a

 
 

 

    
        

    
.(37) 

The representative terms in (23) are changed by sensitizing to 

 

   

 

2
11 122 2

2
13 142 2

3 3
(4 ) 1 , 1 ,

2 212(1 ) 12(1 )

3 3 9
(4 ) 1 , .

2 2 212(1 ) 12(1 )

E b a E
K K

a b

E b a E
K K

a b

  
 

  
 

 
      

   

   
         

     

 (38) 

The terms 12K  and 14K  are seen to remain unchanged. 

An incompatible four-node element, called QM6 element, is described in [2] and in 

more detail in [7] and [8]. It is obtained by adding bending modes of the type 
2

1[1 ( / ) ]x a a  and 2
2[1 ( / ) ]y b a  to the displacement component representations. This 

element gives very accurate results. It is rather astonishing that the condensed stiffness 

matrix terms for the rectangular shape of QM6 recorded in [2, p. 194], coincide exactly 

with (38) in spite of the different starting points. Based on this, the sensitized modified 

linear rectangular element should work well in practice and some efforts to extend it to 

the general quadrilateral shape may be justified. 

Concerning the theoretical background, we may quote the following [9, p. 491]: 

"Incompatible modes always pose a pedagogical dilemma, since a teacher first stresses 

the importance of compatible fields in developing the single-field elements and then has 

to dismantle this pedagogical structure by introducing incompatible modes." 

Concluding remarks 

Use of the sensitized principle of virtual work can increase the applicability of certain 

finite elements. This was shown in [4] for the two-node Timoshenko beam element. 

Similarly, the contents of the present article show that the properties of the standard 
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four-node quadrilateral element can be modified beneficially by sensitizing. However, 

the present study is restricted especially by the use of the selection 21 12 0   . 

Additional efforts are needed to fully clarify of the possibilities available. 

We may finally note the following. In the Timoshenko beam problem treated in 

reference [4], the sensitized stiffness matrix S[ ]K  is of such a form that it vanishes 

compared to the ordinary stiffness matrix O[ ]K  with vanishing mesh size. This fact 

justifies the apparent mathematical crimes performed with respect to continuity of 

certain terms at element boundaries when just 0C  continuous approximations are 

employed. For the present four-node element, matrix S[ ]K  does not vanish with 

vanishing mesh size. The justification on the use of this element comes now from its 

behavior in the convergence patch test described above in the text. 
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