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Summary. This article gives a computational continuum mechanics answer to a question of 

how much heat is generated, in terms of temperature rise, during controlled shear band 

formation in a rock like material. This problem is treated as adiabatic heating due to mechanical 

dissipation at the material point level. Assuming that only the compressive strength of the rock 

is temperature dependent, the coupled system of the constitutive equations and the adiabatic 

heat equation can be solved as a second order polynomial equation for the viscoplastic 

multiplier at an integration point. A Mohr-Coulomb viscoplastic model with linear softening is 

employed for rock material description. Numerical simulations of a 2D strip under uniaxial 

compression at strain rates up to 10 1/s show that the temperature rise in a rock like material 

with a compressive strength of 100 MPa is less than two degrees.  
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Introduction 

Inelastic deformation and damage processes in quasi-brittle materials are usually 

assumed to be isothermal. While this assumption is justifiable, especially under quasi-

static loading, it is still interesting to know how much heat is generated during 

fracture/inelastic failure processes of quasi-brittle materials such as rock and concrete, 

especially under dynamic loading. For example, if we are to solve a coupled thermo-

plasticity problem of rock fracture due to a thermal shock by an external heat flux, we 

want to know a-priori whether the mechanical heating effects can be neglected as 

insignificant in comparison to the effects of the external heat flux.  

 
 

http://rakenteidenmekaniikka.journal.fi/index
https://doi.org/10.23998/rm.75287


 54 

This problem is dealt with in this paper. Namely, we give a computational 

mechanics answer to the question of how much heat, in the sense of temperature rise, is 

generated in a controlled shear band formation in rock material under compression. This 

kind of problem is quite of often studied related to metals but seldom addressed in the 

field of rock mechanics. We mention here the study by Ben-Zion and Sammis [1], 

which investigates the shear heating in geological faults involving distributed fracturing 

and pulverization of rocks. Their simple calculations predict that the temperature rise 

could be even 100 C in depths from 1 to 5 km due to intensive shearing involving 

inelastic strains ranging from 0.4 to 0.8. However, much milder conditions are 

considered in the present study, i.e. unconfined compression at normal conditions (at 

room temperature and atmospheric pressure).  

In this study, a Mohr-Coulomb viscoplasticity model for rock, augmented with the 

adiabatic heat equation, is employed and implemented in the finite element method for 

solving the problem of adiabatic heating during shear band formation in rock. In the 

numerical examples, a 2D strip made of rock under uniaxial compression at different 

strain rates is simulated in order to answer the research question posed above.    

Numerical model 

All the theoretical and numerical considerations are carried out here under the small 

deformation assumption enabling the additive split of the total strain into elastic, 

viscoplastic and thermal parts by e vp θ.  ε ε ε ε   

According to Ottosen and Ristinmaa [2], adiabatic heating conditions are such that 

neither heat exchange with the surroundings of the body nor heat flow in the body can 

occur due to rapid loading. In these circumstances, there is no external heat sources and, 

thus, the related thermo-mechanical problem can be solved at the material point level, 

along with the constitutive equations, since the only heat source is the mechanical 

coupling.  

The problem of heat generation during shear banding in rock is such a problem. 

Thereby, it is solved with a simple thermo-viscoplasticity model for rock. We choose 

the Mohr-Coulomb yield criterion with a linear softening law for the compressive 

strength as the basis for a viscoplastic consistency model for rock. The Young’s 

modulus and yield strength are assumed to depend linearly on temperature. The model 

thus specified can be written as  
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where σ  is the stress tensor, ,   are the internal variable and its rate,  and 0 are the 

present and reference temperature, 1 3,   are the minor and major principal stresses, 

respectively, q is the stress like softening parameter, c0  is the initial compressive 

strength, K , mK  are the thermal and mechanical softening modulus for compressive 

strength, respectively, and EK  is the thermal softening modulus for Young’s modulus 

E. Moreover, s is the constant viscosity modulus,   and   are the internal friction and 

dilation angle, respectively, vpε  is the viscoplastic strain rate (tensor) depending on the 

plastic potential MCg , accounting for nonassociative flow, and viscoplastic increment  . 

Finally, the last equations in (1) define the consistency conditions. The present model is 

thus written in the viscoplastic consistency format by Wang et al. [3].  

We still need the heat equation for temperature evolution description. In adiabatic 

conditions (the heat sources as well as the gradient of the heat flux are ignored) can be 

written as [2] 
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where , c are the density and the specific heat capacity of the material, E is the 

elasticity tensor,  is the total strain tensor,  is the thermal expansion coefficient, and 1 

is the second order identity tensor. The fourth term in the right hand side is zero because 

the stress-like softening parameter does not, in this study, depend on the temperature. 

Moreover, the thermo-elasticity effects, i.e. the third term in (2), can be neglected as 

insignificant in comparison to thermo-plasticity effects. The effect of the third term, 

being directly proportional to the elastic strain rate, is at its greatest just below the 

elastic limit, i.e. the compressive strength, beyond which its effect diminishes as the 

viscoplastic strain increases. Simplifying Equation (2) in the elastic regime leads to the 

Kelvin’s expression of thermo-elasticity as   0 = 0kk/c [2]. Using this to 

estimate the temperature rise in a rock due to a sudden increase of compressive stress to 

–100 MPa gives  = 0.16 C for the material properties given later. Therefore, the 

thermo-elastic effects can be ignored.  

A glance at equations (1) and (2) reveals that the only independent variable to be 

solved is . Therefore, as the consistency must be fulfilled at the end of a time step, we 

can proceed as follows:  
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where the fact that MCf̂  is a homogeneous function of degree one and the definition of 

the trial stress according to the standard elastic predictor-plastic corrector split (see [4]) 

concept has been used. Moreover, the rate of viscoplastic increment has been replaced 

by its algorithmic counterpart: 1 ( ) /n n t      . Now, the stress increment and the 

temperature increment can be expressed as  

 

            

MC
vp

1
1 vp m 1

trial 2 2MC MC MC1
1 m m

( ) : ( ) :    and

:

    : : ( ) :

n nc

n nc

g

K

g g g
K K





  

  

     

 




     



    

   
       

   

σ E ε E
σ

σ ε

σ E
σ σ σ

            (4) 

 

Substituting these into (3), we obtain the second order equation for solving the 

viscoplastic increment: 
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Thus, at the integration point, the problem of adiabatic heat generation due to shear 

banding is reduced to solving a second degree equation for the viscoplastic multiplier. 

However, this result is valid only for this specific case where the temperature 

dependence of the Young’s modulus is kept constant during the stress integration. The 

stress return mapping can now be sketched as   
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However, the Young’s modulus is kept constant during the stress integration and 

updated only after solving the temperature by 1 0 1 0( )E

n nE E K      .  

Numerical simulations 

The numerical simulations of a 2D strip under uniaxial compression are carried out in 

this section. The material properties and model parameters are as follows: E = 60 GPa,  

= 0.2, c0 = 100 MPa,  = 2600 kg/m3,  =  = 45, Km = c0
2he/(2GIIc), GIIc = 2.5 

J/mm2,  = 1E-5, K-1
, c = 700 J/kgK, K = 0.467 MPa/K, K

E = 143 MPa/K.  Here, he 

= (2Ae)
1/2 is the characteristic size of an element in the mesh, and  is the thermal 

expansion coefficient. The boundary conditions are illustrated in Figure 1a. The shear 

band is triggered by a weak element at the left upper corner of the mesh, which consists 

of 200 bi-linear rectangular (square here) elements. The first simulation is carried out 

at 11 s   with s = 0.01 MPas. The results are shown in Figure 1.  

According to the simulation results in Figure 1b, the equivalent viscoplastic strain in 

the shear band exceeds 0.2. This quite intensive deformation is illustrated in Figure 1d 

with a magnification factor of 5. However, the consequent temperature rise in the shear 

band at the end softening process is less than 1.5 degrees (see Figure 1c and f). Finally, 

the compressive strength of the specimen in this test is 100 MPa as expected. Next the 

same problem is simulated at 110 s   with s = 0.5 MPas. The results are shown in 

Figure 2. 

At higher strain rate with higher viscosity some strain rate hardening occurred, as 

can be observed in Figure 2a, where the maximum average stress is 120 MPa. 

Moreover, practically the whole specimen has undergone some viscoplastic 

deformation, as attested in Figure 2b. Temperature rise is still somewhat mild exceeding 

barely 1.5 degrees (centigrade). With this temperature change then, the decrease in 

tensile strength and the Young’s modulus are 0.72 MPa and 0.21 GPa, respectively. 

These values, being 0.72 % and 0.36 % in percent, are quite insignificant so that 

assuming this problem to be isothermal is justified. 



 58 

 

Figure 1. Simulation results at strain rate 1/s with s = 0.01 MPas: Geometry and boundary 
conditions (a), final shear band in terms of equivalent viscoplastic strain (b), temperature change 
at the end of simulation (c), deformed geometry (magnification = 5) (d), stress-strain curve (e), 
and the nodal temperatures as a function of time (f). 

Conclusions 

A numerical scheme to solve the problem of adiabatic heating due to viscoplastic shear 

band formation in rock like materials was developed and applied in simulations of a 2D 

strip under dynamic uniaxial compression. The problem reduced into solving a second 

order polynomial for the viscoplastic increment during stress integration at an 

integration point. This result is generally valid only for the specific case studied in this 

paper, i.e. Mohr-Coulomb viscoplasticity with only the compressive strength assumed 

to depend on temperature. In more general cases, the Newton-Raphson iteration must be 

used. 

According to the simulations of controlled shear band formation in a rock under 

dynamic uniaxial compression, the temperature rise is less than a couple of degrees up 

to 10/s of strain rate. Therefore, the usual isothermal assumption is justified.  
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Figure 2. Simulation results at strain rate 10/s with s = 0.5 MPas: Final shear band in terms of 
equivalent viscoplastic strain (a), temperature change at the end of simulaton (b), deformed 
geometry (magnification = 5) (c), stress-strain curve (d), and the nodal temperatures as a 
function of time (e). 
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