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surfaces   
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Summary. This paper deals with numerical integration of stresses, inelastic strains and internal 
variables related to coupled viscodamage-viscoplasticity models. The class of models 
considered here is the one where the viscodamage and viscoplasticity parts are described 
independently based on their specific loading/yield criteria and evolutions laws. Moreover, in 
the viscodamage part, an anisotropic compliance damage formulation is adopted. Both the 
viscodamage and the viscoplasticity components are formulated in terms of the consistency 
model by Wang (1997). Two methods for coupling the damage and the plasticity parts are 
presented and their performance compared. In the first more traditional method, both models are 
solved simultaneously returning the trial stress onto the intersection of the criteria while 
updating the internal variables. The second, nonstandard method exploits the damage strain to 
impose iteratively the stress equality on the stress vectors returned independently on the 
respective, viscodamage and viscoplasticity surfaces. A special emphasis is laid on the treatment 
of the corner point plasticity case. After the general treatment, the two methods are illustrated 
with an application to the Mohr-Coulomb viscoplasticity model combined with Rankine 
viscodamage model.     
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Introduction 

Numerical analyses of engineering structures and materials involve constitutive 

modeling of failing materials. The two main classes of the constitutive models 

employed therein are the plasticity and damage models [1–3]. On the one hand, pure 

plasticity models can capture the observed inelastic strains and strength degradation (of 

brittle materials) but not the stiffness degradation. On the other hand, plain damage 

models capture the stiffness and strength degradation but not the inelastic (plastic) 

strains. Therefore, the most realistic description of materials, such as concrete and 

rocks, is achieved by coupled damage-plasticity models, as exemplified by Refs. [4–7]. 

These approaches are illustrated schematically in Figure 1. Moreover, many engineering 

materials exhibit strong strain rate sensitivity under dynamic loading. Thereby, the 
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coupled viscodamage-viscoplasticity models seem the most suitable approach for 

applications involving dynamic loadings. 

 

 

 

 

 

 

 

 

 
Figure 1. Schematic illustration of different approaches: pure damage model (left), pure 

plasticity model (middle) and combined damage-plasticity model (right). 

There are several ways to couple the damage and plasticity parts of the combined 

model [3–9] and to perform the stress integration and updates of the internal variables. 

If the damage model is formulated with a loading function that indicates stress or strain 

states leading to damage evolution, the classical corner plasticity techniques from the 

multisurface plasticity theory can be employed [5, 7–9]. However, if damage is driven 

by plastic strains then no loading function is needed since the yield function indicates 

also the stress states leading to damaging [4]. Finally, a less standard method exists that 

exploits the damage strain to impose iteratively the equality of the stresses returned 

independently on the respective damage and plasticity surfaces [6]. 

In the present paper, the classical corner plasticity method based on consistency 

conditions and the damage strain based iteration method are employed and applied to 

the class of combined viscodamage-viscoplasticity models. A special emphasis is laid 

on the treatment of a corner plasticity case, i.e. the return onto the intersection of the 

criteria. Moreover, the compliance damage concept is adopted. The viscosity is 

accommodated by the Wang’s consistent viscoplasticity format which enables the 

employment of classical return mapping algorithms [10]. After the general treatment of 

the problem, the developed methods are illustrated with a numerical example taken 

from constitutive modelling of rock. More specifically, in the model the Mohr-Coulomb 

viscoplasticity describes the material failure in compression while a Rankine type of 

viscodamage model governs the rate-dependent damage processes in tension.  

It is emphasized here that the two integration methods are previously presented in 

the literature so that the main novelty of the present work is their comparison. However, 

studies concerning the nonstandard method based on iterative imposition of the stresses 

exploiting the damage strain are extremely rare – the author could find only two works 

[3, 6]. Moreover, in both of these previous studies the considered constitutive models 

were rate independent while in the present paper the models are rate dependent. 

Therefore, as this method proves, in the numerical examples presented here, to be 

efficient in solving problems involving rate dependent damage and plasticity, the 

present work has a justified goal of promoting this method. 
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Coupled viscodamage-viscoplasticity model 

The fundamental assumption of the models considered here is the additive 

decomposition, valid under the infinitesimal strain theory, of the total strain,ε , in to 

elastic, viscoplastic and viscodamage parts, eε , vpε , vdε , respectively, by 

Different strain components of the decomposition (1) are illustrated in Figure 2 in a 

typical cyclic loading of an elasto-viscoplastic-viscodamaging material. It should be 

noted that the viscodamage strain, which is a result of micromechanisms such as void 

and crack formation, is recoverable upon unloading.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic illustration for the decomposition of strain into different components under 

cyclic loading of an elasto-viscodamage-viscoplastic material.  

Viscoplastic consistency model 

Unlike the classical overstress viscoplasticity formulations by Perzyna and Duvaut-

Lions, the more recent viscoplastic consistency model [10] utilizes the consistency 

condition recasting the viscoplasticity into a format that allows to use the standard 

computational plasticity algorithms for stress integration. The main components of such 

a model are 

 

 

where vpf is the dynamic yield function, )(ˆ
vp σf  is the given function of stress , y is the 

static yield stress, hvp and svp are the plastic and viscosity moduli, gvp is the viscoplastic 
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potential, 
vp vp,   are the internal variable and its rate, respectively,

vp is the 

viscoplastic increment, and ),( vpvp σk  is function that relates vp to
vp .  

Thermodynamics poses some restrictions on the plastic potential as well as on 

function kvp. Accordingly, if gvp is a convex function possessing the property 

0)0,(),( vpvpvp  0σ gKg  for vp, Kσ such that
vp vp vp( , , ) 0,f K  σ  then the dissipation 

inequality  

 

 

(with
vp vp vpK h  ) is fulfilled for the following evolution laws 

 

 

By comparing (2) and (3), function kvp is identified as vpvpvpvp /),( Kgk σ .  

 

Viscodamage consistency model: compliance tensor approach 

The compliance damage approach (see [3]) based on the usage of the elastic compliance 

tensor as an anisotropic damage variable is chosen here. Due to the formal equivalence 

between the compliance damage theory and plasticity theory, this model can be recast 

into the consistency viscosity format – hence the name viscodamage consistency model. 

The main ingredients of such a model are [7]  

 

 

where fvd is the viscodamage loading function, f is the fracture stress indicating the 

damage initiation stress, D is the (fourth order) compliance tensor, whereas the 

meanings of the rest of symbols are equivalent to the corresponding ones related to the 

viscoplastic model.  

 It should be noted that the evolution law for the compliance tensor in (5) is derived 

by assuming that the damage loading function )(ˆ
vd σf  is a homogeneous function of 

degree one, i.e. so that )(ˆ:/)(ˆ
vdvd σσσσ ff  . The model accounts for the loading-

induced anisotropy through the tensor product () of the damage loading function 

gradients. 

The mechanical dissipation inequality for this model reads 
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with vdvdvd hK  . For softening behavior, the second term of the dissipation inequality 

is non-positive while the non-negativity of the first term follows trivially from tensor 

algebra. Thus, the model verifies the dissipation inequality. 

In the compliance damage approach, the current value of compliance tensor, which 

evolves by damage from the initial value ( 0)t D 0 , is added to the elastic 

compliance, 11

ed )(   DCE , where Ed is the damaged stiffness and Ce is the standard 

elasticity tensor. The relation connecting the damaged compliance and the damage 

strain is σDε :vd  . Finally, as the focus of the present paper is on the stress integration 

methods, the unilateral conditions of damage, i.e. the stiffness recovery upon closing 

microcracks, are neglected in the present work. They are dealt with, e.g. in [7].  

Stress return mapping algorithms for coupled models 

Two different methods for stress integration are described here. Both are essentially 

based on the standard elastic predictor-plastic corrector split widely used in 

computational plasticity [2, 3]. However, due to the presence of the damage strain in the 

decomposition (1), the elastic predictor stress is slightly different from the standard one: 

 

 

where the relation just mentioned above, vd,( 0) trial

1 1:k

n n n



 ε D σ , has been used, while i and n 

denote the global and local iterations, respectively. In the following, the stress 

integration algorithms are presented for the case when both the yield and damage 

loading function are positive. The cases where only one criterion is active are readily 

identifiable from the more general case with both criteria active.   

 

Algorithm 1: direct solution of coupled damage-plasticity processes 

In the first algorithm, the viscodamage and viscoplasticity multipliers are solved directly 

by enforcing the consistency conditions in (2) and (5) simultaneously. After the 

elimination of the rate of the internal variables in the yield and damage loading 

functions and an expansion by the vector valued Taylor series, the following stress 

return mapping scheme is obtained (see [7] for details):  
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where  
T

n
means that the arguments are evaluated at values of nth iteration, and 

 

 

in matrix form. Equations (8) are repeatedly evaluated until an acceptable tolerance is 

reached, i.e. vd vd, vd,( , , ) Toln n nf   σ  and vp vp, vp,( , , ) Toln n nf   σ .  

Finally, the material tangent tensor is derived for this approach. The starting point is 

the rate form of the stress-strain relation (7) developed further as follows: 

 

 

where, in addition to the evolution equations for the viscoplastic strain and the 

compliance tensor, the tensor relation ( ) : ( : ) A B C B C A as well as the assumption 

that vdf̂ is a homogenous function of degree one have been used. In passing, it is noted 

that the stress update formula in equations (8) was derived similarly as (10). 

Now, the viscoplastic multipliers are given by the first of equations (8) and, thus, the 
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where 1

ijG are the entries of the inverse of matrix in (9) and Ed is as in (7).  

 

Algorithm 2: iterative imposition of stress equality using damage strain 

The basic idea of this approach is to carry out the viscodamage and viscoplasticity 

computations independently without any exchange of the results. This results in two 

stresses, viscodamage and viscoplastic stress, returned onto their respective yield and 

damage surfaces. Then, the equality of these stresses is enforced iteratively using the 

damage strain as the argument. Thereby, at the end of the local iteration, the stress 

should be 

 

 

where k denotes the iteration with respect to the damage strain, n is the iteration counter 

with respect to the separate damage and plasticity stress return mappings, and i is global 

iteration. The trial stress is computed using equation (7) and then, the first value of the 

damage strain is based on that as vd,(0) 1 trial

1 1:n n n



 ε D σ . However, a problem arises at the 

transition from elastic response to damage process if the initial value of the compliance 

damage tensor is set to zero, as specified above. Therefore, in this algorithm the initial 

compliance damage is set to 1

0 e

D C [6]. Nevertheless, this choice requires the elastic 

modulus to be doubled to retain the experimental elastic behaviour of the material.  

The damage strain is updated based on the residual difference, i.e. the non-

equilibrium, between the stresses as follows [3, 6] 
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Now, the material tangent for the coupled case can be identified because at the end of 

iterations (13) the stresses are equal. Thus, exploiting the results (14), one obtains 

 

 

Finally, the algorithm is sketched in Table 1. 
 

 

Table 1.Algorithm for coupled viscodamage-viscoplasticity model based on the damage strain. 
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The computations with respect to viscoplasticity and viscodamage steps in Table 1 

can be performed with the steps identifiable from those of the coupled model integration 

given in Equation (8). 

Finally, a comment on the computational labour required by these algorithms is 

given. It seems that the Algorithm 2 in Table 1 requires more, at least during a single 

iterative sweep, computational effort than Algorithm 1 due the usage of the material 

tangent tensors when solving the new damage strain (Equation (13)). However, 
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Algorithm 1 needs the matrix G in (9) at each iterative sweep to be computed. 

Moreover, with implicit methods, the material tangent stiffness (11) needs to be 

computed at the end of the iterations in Algorithm 1 so that the total computational 

labour seems to be of the same order. 

Treatment of corner plasticity case 

In the discussion on the algorithms presented above, the intricacy related to the corner 

plasticity was not addressed. The geometry of the corner point plasticity is illustrated in 

Figure 3. Therein, E is the elastic domain and the gradients of the plastic potentials, g1, 

g2, multiplied by the elasticity matrix E, define the regions 1, 12, 2, which are 

characterized as follows: In region 1, it holds for the plastic multipliers that 

1 20, 0   , in 12 it holds that 1 20, 0   , and in 2 it holds that 1 20, 0   [2]. 

Thereby, a trial stress trial2 located at 2 arrives, during the stress return mapping, at the 

region where 1 0f   which results in 1 0  , as illustrated in Figure 3. Thus, the genuine 

corner point situation and the consequent successful (i.e. with 1 20, 0   ) return 

mapping to the corner point can take place only when the trial stress is located in the 

cone 12  (trial1 in Figure 3).  

However, according to Simo & Hughes [2], the set of active criteria cannot be 

known in advance. This is because the positivity of failure criteria in the trial step does 

not guarantee that a genuine corner plasticity case has been realized [2], as was just 

illustrated. The trial-and-error type of remedy proposed in [2] is adopted here with 

Algorithm 1. In this method the working set of active criteria is updated during the 

iterative process, i.e. if either of the updated increments is negative, vd, 1 0n   or 

vp, 1 0n   , then this criterion is dropped and the stress return mapping is restarted with 

the remaining criterion.  

 

Figure 3. Geometric illustration of a corner point cor. 

As to Algorithm 2 where the viscodamage and viscoplasticity integrations are 

performed independently, there seems to be no need for special corner point techniques. 
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However, hypothetically, this same scheme could be applied with a modification: if the 

trial stresses, vp,trial ( ) vp vd,( )

1 e 1 1: ( )i k

n n n n    σ C ε ε ε or vd,trial 1 vd,( )

1 1: k

n n n



 σ D ε , result in a negative 

value of the corresponding criterion, trial

vp 0f  or trial

vd 0f  , the algorithm has arrived 

either in 1 or 2 indicating that the stress integration needs could be restarted with a 

single criterion. 

Numerical examples 

Model specification 

Some illustrative numerical examples are given here by applying the general theory 

presented above to the case of Mohr-Coulomb (MC) viscoplasticity model combined 

with Rankine viscodamage model. This model, assuming vp vd 1k k  in (2), and (5), is 

specified by following equations (in the xy-stress space) 

 

 

where t0 and c0 are the tensile and compressive strengths,  is the internal friction 

angle, hR and hMC are the softening moduli in tension and compression, respectively, 

and sR and sMC are the constant viscosity moduli. The softening moduli are defined with 

the specific mode I and II fracture energies as g = t0le/GIc and hMC = c0
2le/2GIIc with 

le being a characteristic length of a finite element. Moreover, non-associated flow rule 

with a potential, gMC, similar in form to fMC but using the dilatation angle  in the 

definition of k instead of the internal friction angle is employed. 

 

Uniaxial cyclic response   

First, the response of this model is demonstrated at the material point level using a 

computational model consisting of two CST (constant strain triangle) element model in 

Figure 4a by imposing a load reversal program in vertical y-direction at nodes 3 and 4. 

The loading program given as displacement BC starts with a tension cycle followed by a 

compression cycle, and finally terminates in tension.  

The material properties used for demonstrative purposes, and the model parameters 

used in the simulations are: Young’s modulus E = 60 GPa, Poisson’s ratio  = 0.2, 

material density  = 2600 kg/m3, tensile strength t0 = 10 MPa, compressive strength 
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 (16) 



11 

 

c0 = 100 MPa, mode I fracture energy GIc = 50 N/m, mode II fracture energy GIIc = 

25GIc, internal friction angle  = 30, dilatation angle  = 5, and viscosity moduli sR = 

0.005 MPas, sMC = 0.005 MPas.   

 

Figure 4. Model prediction with two-element mesh in cyclic loading: stress-strain response (a), 

damage component evolution (b), and the computational model (c). 

As the objective of the present paper is to compare the stress integration methods 

and not to model any real rock, these properties are chosen so as to represent a rock-like 

material in general, not any particular real rock.  

Figure 3b shows the corresponding damage development where the damage 

components are calculated by d, 0,1 /ii ii iiD E E   where Ed,ii and E0,ii are the diagonal 

entries of damage degraded and intact stiffness tensor, respectively. It can be noticed 

that stiffness degrades during the first tension cycle but no irreversible strain is 

generated. During the compression cycle, viscoplastic strains develop but no stiffness 

degradation. The reader should note that unilateral conditions of damage, i.e. the 

stiffness recovery upon crack closure in compression, are not accounted for in the 

present model as mentioned above. Finally, it should be reminded that both methods 

give the same results here since the corner point plasticity does not occur with the 

uniaxial load reversal program used here.  

 

Bi-axial tension/compression test 

Next, the biaxial compression/tension test is simulated with the setup described in 

Figure 4c. Three cases of the axial and lateral velocities are considered here: the axial 
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velocity is set to vy = 0.05 m/s (compression) for each case while the lateral velocities 

are vx = 0.0125 m/s, vx = 0.025 m/s, and vx = 0.05 m/s (tension) for cases 1, 2, 3, 

respectively.  The results for stress-strain responses are shown in Figure 5.  

 

Figure 5. Model with the two-element model in bi-axial tension/compression: stress-strain 

curves with vx = 0.0125 m/s (a), (b), vx = 0.025 m/s, (c), (d), and vx = 0.05 m/s (e), (f). 

In Case 1, i.e. the lowest lateral velocity, the Rankine type of damage process is 

activated first in lateral direction. Later on, as the compressive strength in mixed tension 

compression is reached, the return type changes to a return on the MC surface. The 

resulting stress-strain responses for both model are shown in Figure 5a and b. In Case 2, 

the lateral velocity being 0.025 m/s in both negative and positive x-direction results in 

equibi-axial tension/compression. The realized return types are the same as in Case 1 

but a notable difference in the stress-strain responses is that the axial stress show a 

softening response, in contrast to hardening one in Case 1, as attested in Figure 5d. 
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Finally, in Case 3, the lateral extension velocity is high enough to change the return type 

to the corner point case. This change is reflected in the stress-strain response so that 

both the x and y components of the stress reach, as the corner point moves towards the 

origin of the stress space due to softening, the residual values during the loading process 

(Figure 5 e and f). It should be mentioned here that Algorithm 2 required three iterations 

to return the trial stress into the corner point with the convergence tolerance of 10E-12.  

As to Algorithm 1 in Case 3, it did not reach a stable corner point return with the 

present parameter values. Instead, an unstable behaviour “oscillating” between a return 

to MC and Rankine surfaces was attested.  

Conclusions 

Two stress integration (return mapping) algorithms for coupled viscodamage-

viscoplasticity models were considered in this paper. The first was the classical direct 

solution of the plastic increments and the consequent trial stress correction with a 

formula similar to the Koiter’s rule. The second, far less standard, algorithm integrates 

the viscodamage and viscoplasticity problems independently and then imposes the stress 

equality iteratively adjusting the damage strain.  

The general theory was applied to coupled Rankine visco-damage-Mohr-Coulomb 

viscoplasticity softening model. The numerical examples showed that the latter, non-

standard, algorithm is robust and converges fast in genuine corner point return types. 

Therefore, it deserves to be more widely applied in computational structural failure 

analyses   
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