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Finite element model for rectangular hollow section T joints

Marsel Garifullin1, Sami Pajunen, Kristo Mela and Markku Heinisuo

Summary. Major developments in hardware and software enable researchers and engineers to
apply non-linear finite-element analyses to study the behavior of tubular structures. However,
to provide reasonable results, constructed finite element models should be verified and validated
with experimental data. This article develops a finite element model for high strength steel
rectangular hollow section T joints. The joints are considered under in-plane bending moment
and axial brace loading. The paper determines the most suitable finite elements and the number
of layers in the thickness direction for the numerical assessment of initial stiffness and modeling
the whole action-deformation behavior of joints. Finally, the proposed FE model is validated
with the series of experimental tests. The validation shows that the developed model properly
captures the local behavior of tubular joints and can efficiently serve as a reliable tool in routine
numerical analyses.
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Introduction

The finite element modeling (FEM) represents a powerful tool for analyzing tubular joints
under different loading conditions. For a long time, welded hollow section joints have been
modelled by shell finite elements, since shell models are simple for modeling and do not
require large computational efforts. The pioneering work was conducted by Puthli [1],
who first simulated the ultimate load behaviour of tubular joints. Later shell elements
were employed by many researchers [2, 3, 4, 5, 6, 7]. Although shell elements are effective
for most joints providing accurate results without considerable computational effort, they
present certain difficulties in modelling fillet welds. Some methods for the idealization of
welds are presented in [8, 9, 10, 11].

The increasing computing power of modern computers allows researchers to use solid
elements to simulate the behavior of tubular joints [12, 13, 14, 15]. In comparison to
shell elements, the main advantage of solid ones is the simple modelling of welds, which
allows to repeat exactly the geometry of welds. Some comparative analyses on the use
of shell and solid elements have been conducted in [16, 17]. According to [18], the most
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accurate results for tubular joints are provided by using solid models. The paper [19]
provides a broad discussion concerning the FE analysis of welded hollow-section joints,
paying attention to the most actual problems.

However, the broad application of solid elements presents the problem of selecting suit-
able finite elements. Currently, the following solid elements are available for meshing 3D
models: tetrahedra, triangular prisms (wedges) and hexahedra (bricks) [20]. Generally,
tubular joints are modelled with bricks. However, even within bricks, the choice of avail-
able elements is rather wide: there are linear and quadratic elements, elements with full
and reduced integration, elements with incompatible modes and hybrid elements. Each
element is developed for particular types of tasks. In most of scientific tasks, the choice of
a proper finite element directly affects the accuracy of the solution; an incorrect selection
can lead to unreliable results.

Another important issue in modelling is the number of elements in the thickness direc-
tion, i.e., the number of layers. Generally, increasing the number of layers improves the
accuracy of the analysis. However, this simultaneously increases the number of degrees
of freedom in the whole model, being computationally very expensive. For this reason,
the correct number of layers is very important to provide an accurate solution within a
reasonable calculation time.

According to [19], at least two quadratic solid elements are recommended in the thick-
ness direction to properly model the behavior of tubular joints. However, models with
such mesh are computationally very demanding and thus require considerable calculation
time. At the same time, some engineering tasks [21, 22] require only initial stiffness of
joints, without considering their resistance and whole action-deformation responses. In
such tasks, FEM should provide a fast tool for evaluation of joints performance, making
calculation time the limiting factor.

This article develops a finite element model for rectangular hollow section (RHS) T
joints. A typical RHS T joint is composed of two hollow section members welded at
an angle of 90◦, as shown in Figure 1. Joints with fillet and butt welds are considered
under two loading cases: in-plane bending and axial brace loading, as demonstrated
in Figure 2. The paper identifies the most suitable finite element and the number of
layers in the thickness direction by the criteria of accuracy of results and reasonable
calculation time. The verification is conducted in terms of initial stiffness and the whole
load-deformation behavior of joints. Finally, the constructed FE model is validated with
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Figure 1. Notations of RHS T joint.
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Figure 2. Loading cases: a) in-plane bending; b) axial brace loading.

experimental data available in the literature. All analyses employ a general purpose FE
software Abaqus/Standard [20].

Structural behavior of RHS T joints

The behavior of tubular joints demonstrates certain similarities in case of in-plane bending
and axial brace loading and can be idealized using local beam models. A local beam model
for semi-rigid RHS T joints has been developed in [23] and is presented in Figure 3. The
rotational and longitudinal springs represent rotational and axial stiffness for in-plane
bending moment and axial brace loading, with initial values Sj,ini and Cj,ini, respectively.
Here S corresponds to rotational stiffness and C to axial stiffness. In accordance with
EN 1993-1-8:2005 [24], the subscripts j and ini correspond to ”joint” and ”initial phase”,
respectively. It should be noted that the springs are located at the upper flange of the
chord and connected to the chord axis by a rigid beam [25].

The initial stiffness and resistance of tubular joints can be found from correspond-
ing action-deformation curves, which are obtained from experimental tests or numerical
simulations. For convenience, both loading cases are considered simultaneously: the first
notation corresponds to in-plane bending, while the one in brackets – to axial loading. In
particular, initial stiffness Sj,ini (Cj,ini) is found as the tangent line in the elastic phase of
the curve, as shown in Figure 4a:

Sj,ini = ∆M/∆ϕ

Cj,ini = ∆N/∆δ
(1)

The determination of resistance is generally more complicated and depends on the
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Figure 3. Design local models for RHS T joint under in-plane bending and axial brace loading.
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Figure 4. Action-deformation curve for T joints: a) determination of initial stiffness; b) resistance of
joints with β ≤ 0.85.

brace-to-chord width ratio β. For joints with β ≤ 0.85, bending of the chord top face gov-
erns the deformation of the whole joint, and the action-deformation curve has a clearly ob-
served hardening phase, as depicted in Figure 4b. In this case, plastic resistance Mpl (Npl)
is determined according to [26] as the intersection of two tangent lines corresponding to ini-
tial stiffness Sj,ini (Cj,ini) and hardening stiffness Sj,h (Cj,h). Ultimate resistance Mu (Nu)
corresponds to the maximum load the joint can resist. Theoretically, the resistance of
such joints is computed according to Tables 7.11 and 7.14 of EN 1993-1-8:2005 [24]:

Mip,1,Rd = knfy0t0
2h1

(
1

2η
+

2√
1− β

+
η

1− β

)
/γM5

N1,Rd =
knfy0t0

2

1− β

(
2η + 4

√
1− β

)
/γM5

(2)

where γM5 = 1.0 is the partial safety factor, kn ≤ 1.0 is the chord stress function, which
allows to consider the influence of axial stresses in the chord [24]. The remaining notations
are determined in Figure 1.

The behavior of joints with 0.85 < β ≤ 1.0 is generally governed by chord side walls
buckling [24]. Instead of a well-developed hardening phase, the action-deformation curves
of such joints have a clear peak load Mmax (Nmax). To evaluate the resistance of the joint,
the 3%b0 deformation limit is calculated in accordance with [27]. This limit restricts local
deformations of the joint to 3% from the chord width. For a joint loaded by an in-plane
bending moment and an axial force, the deformation limits are respectively found as

ϕ3%b0 =
0.03b0
h1/2

=
0.06

η

δ3%b0 = 0.03b0

(3)

According to [28], the resistance of such joints depends on the correlation between the
peak load and the 3%b0 deformation limit. If a joint has a peak load Mmax (Nmax) at a
deformation smaller than ϕ3%b0(δ3%b0), the peak load is considered to be the resistance of
the joint, as shown in Figure 5a. If a joint has a peak load Mmax (Nmax) at a deformation
larger than ϕ3%b0(δ3%b0), the resistance is determined as equal to the load at the defor-
mation limit (Figure 5b). Theoretically, the resistance corresponding to chord side walls
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Figure 5. Action-deformation curve for T joints with 0.85 < β ≤ 1.0.

buckling is computed in accordance with Tables 7.11 and 7.14 of EN 1993-1-8:2005 [24]:

Mip,1,Rd = 0.5fy0t0(h1 + 5t0)
2/γM5

N1,Rd = fbt0 (2h1 + 10t0) /γM5

(4)

where fb is specified in Table 7.11 of EN 1993-1-8:2005. The remaining notations are
determined in Figure 1.

Finite element model for RHS T joints

Development of FE model

All sections are modelled with round corners. To exclude possible effects of chord bound-
ary conditions, the length of the chord is selected to be 6b0, as recommended in [29], while
the brace length is taken to be 4b1. The members are meshed using solid hexahedral el-
ements, being refined near the joint, as depicted in Figure 6a. The recommended mesh
size is determined to be t0/2. The proper finite element type and the number of elements
in the thickness direction are evaluated in the following sections.
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Figure 6. FE model: a) meshing; b) butt welds modeling; c) fillet welds modeling.
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In this study, joints with butt and fillet welds are considered. Butt welds are modelled
as the base material of the brace, as shown in Figure 6b. The contact between the
connected members is modelled using the tie constraint, which ties two surfaces together
with no relative motion between them. This tool is used by many researchers [30, 23, 31]
and it allows to use independent meshes for the connected members without matching
their nodes, thus considerably reducing the labor intensity of the modelling process.

Fillet welds are modelled as a part of the brace, repeating their actual geometry, as
shown in Figure 6c. The contact between the weld and the chord is modelled with the
tie constraint; however, no interaction is introduced between the brace and the chord.
Strictly speaking, the contact between the brace and the chord should be modelled with
the contact interaction to avoid possible penetration of brace nodes into the chord resulted
from compressive loads. However, it has been shown that the penetration takes place
only at very large deformations and does not influence the results in the practical range
of interest [32]. It should be noted that for equal-width joints (β = 1.0), longitudinal fillet
welds cannot be performed and are replaced by partial/full penetration butt welds.

Material properties can be modelled with true stress-strain curves obtained from ten-
sile coupon tests, or employing one of the simplified models proposed in Appendix C.6
of EN 1993-1-5:2006 [33]. Loading is brought about by a force-controlled nonlinear static
analysis, applying a concentrated in-plane moment M or an axial force N to the reference
point connected rigidly with the end of the brace. If the joint is simply supported at
its ends, the axial force N causes in-plane bending in the chord, producing additional
normal stresses on its faces [34]. These stresses affect the structural behaviour of tubular
joints, reducing their resistance and initial stiffness. To consider the behaviour of joints
under pure axial load, this effect should be eliminated by several possible approaches.
The most reliable one employs a contact interaction with a ”rigid floor” modelled with
extremely stiff elements, as shown in Figure 7a. Although this method as accurately as
possible simulates the real behavior, it is computationally very demanding. The second
approach introduces constraints against vertical displacements along the length of the
chord, as shown in Figure 7b. This technique is rather simple but it allows no discon-
nection between the contacted surfaces during the loading process. For this reason, it
slightly overestimates the stiffness of the model. The third method applies compensat-
ing moments M0 = 0.25N(L0 − h1) at the ends of the chord, resulting in zero bending
moment on the area of connection [34], as shown in Figure 7c.
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Total bending
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Figure 7. Possibilities to eliminate chord bending: a) contact interaction with ”rigid floor”; b) vertical
constraints; b) compensating moments.
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Extracting local deformations of joints

To construct the action-deformation curve of the joint, applied forces and moments as
well as the corresponding displacements and rotations are measured during the loading.
Generally, measured displacements and rotations reflect the global behavior of the joint,
which includes the deformations of the chord and the brace, as well as the local deforma-
tions of the joint. The latter represents the deformations at the connection area, where the
brace and the chord meet. To obtain the local rotation of the joint ϕ in case of in-plane
bending, the rotation of the brace ϕbr and the rotation of the chord ϕch are subtracted
from the rotation in the end of the brace ϕtot (Figure 8):

ϕ = ϕtot − ϕbr − ϕch (5)

In case of axial loading, two parameters are measured in FEM: the vertical displace-
ment in the end of the brace δbr and the vertical displacement in the bottom flange of the
chord δbot, as shown in Figure 9. The local displacement of the joint δ is then

δ = δbr − δbot − δsh (6)

where δsh is the shortening of the brace. If the bending of the chord is prevented by any
of the methods depicted in Figure 7, δbot can be considered as equal to zero. The motions
of the members are supposed to be elastic (assuming that plastic deformations occur only
in the connection area); therefore, the values ϕbr, ϕch, and δsh are calculated manually
using the engineering beam theory:

ϕbr =
ML1

EI1
;ϕch =

ML0

12EI0
; δsh =

NL1

EA1

(7)

where L0 and L1 are, respectively, the lengths of the chord and the brace, I0 and I1 are,
respectively, the second moments of area of the chord and the brace, A1 is the cross-
sectional area of the brace, and E is Young’s modulus. It should be noted that the
motions of the brace, ϕbr and δsh, can be eliminated in advance by modelling the brace
with the Young’s modulus considerably higher than that of the chord. Since the local
deformations of the joint are represented by the deformations of the chord, this approach
causes no losses of accuracy in the analysis.
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Figure 8. Behavior of the T joint under bending moment: a) elastic rotation of the brace; b) elastic
rotation of the chord; c) local rotation of the joint.
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Figure 9. Definition of local behavior under axial loading.

Initial imperfections

To provide reliable results, a FE model must also incorporate initial imperfections that
are obviously always present in real structures. In relation to tubular joints, initial imper-
fections include geometrical imperfections, welding residual stresses and residual stresses
due to cold-forming. However, it was shown that the negative influence of geometrical
imperfections on the behavior of tubular joints is inconsiderable, generally accounting
for 1-2% [35]. In addition, the comparative parametric analysis demonstrated that the
consideration of welding stresses in the FE analysis leads to greater resistance of tubular
joints [36]. The influence of residual stresses due to cold-forming was found also insignif-
icant [37]. For this reason, tubular joints can be considered as not sensitive to initial
imperfections and can be safely modelled with no imperfections.

Search of best finite element and number of elements in the thickness direction for
initial rotational stiffness

This section determines the most suitable finite element and the number of elements in the
thickness direction that are required to accurately determine the initial rotational stiffness
of the RHS T joint under in-plane bending. All analyses are conducted for a square hollow
section T joint with a 200x200x8.8 mm chord and three braces: 50x50x4 mm (β = 0.25),
100x100x8 mm (β = 0.50) and 150x150x8.8 mm (β = 0.75). For simplicity, the section
considers only joints with butt welds. Since only initial stiffness is analyzed in this section,
the load is applied using a single increment. Assuming that initial stiffness is calculated
in the elastic phase of the loading process, only elastic properties are introduced to the
material model, with the Young’s modulus of 210 GPa and the Poisson’s ratio of 0.3. The
study analyzes five types of finite elements available in Abaqus for static analyses: C3D8,
C3D8R, C3D8I, C3D20 and C3D20R. The details of the elements are provided in Table 1.
To investigate the number of elements in the thickness direction, the joints are modelled
with one-, two-, three- and four-layered mesh.

Figure 10 presents the initial stiffness of the analyzed joints depending on the ele-
ment type and the number of layers. As can be seen, linear reduced integrated elements
(C3D8R) considerably underestimate the stiffness of the joints, leading to zero stiffness
for the one-layered mesh. Such behavior can be explained by the hourglass effect, which
is typical for linear reduced-integration elements [38]. To avoid this effect, the Abaqus
manual [20] suggests at least four C3D8R elements in the thickness direction for any
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Table 1. Analyzed finite elements [20]

Finite element Type Number of nodes Remarks

C3D8 linear 8 full integration
C3D8R linear 8 reduced integration
C3D8I linear 8 incompatible modes
C3D20 quadratic 20 full integration

C3D20R quadratic 20 reduced integration

structures under bending loads. However, the obtained results demonstrate that even
four C3D8R elements are insufficient for tubular joints, underestimating the stiffness by
10-11%. Fully integrated linear elements (C3D8) similarly underestimate the stiffness,
although the error is not as large as for C3D8R elements. The error declines with mesh
refinement and can be neglected using at least three elements in the thickness direction.

The most relevant results are obtained using quadratic finite elements (C3D20 and
C3D20R). In both cases, the stiffness declines asymptotically with mesh refinement. More-
over, both elements perform similarly, providing reliable results even with a one-layered
mesh. At the same time, reduced integrated elements (C3D20R) require noticeably less
calculation time than fully integrated elements (C3D20). These observations correspond
to [19], who propose at least two quadratic solid elements in the thickness direction.

Attention should be paid particularly to linear elements with incompatible modes
(C3D8I), designed to overcome the problems of shear locking [39]. Compared to quadratic
finite elements, C3D8I elements need considerably less calculation time, providing very
accurate results if not distorted [39]. In this study, these elements show initial stiffness
very close to that calculated by quadratic finite elements, being not dependent on the
number of elements in the thickness direction. From this point of view, C3D8I elements
can be suggested for quick evaluations of initial stiffness, e.g. in surrogate modeling [22].

Based on the above findings, quadratic finite elements (C3D20 or C3D20R in Abaqus)
are recommended to calculate the initial stiffness of RHS T joints. Reduced integration el-
ements (C3D20R) are more preferable, since they require less computational time. Linear
elements with incompatible modes (C3D8I in Abaqus) can also be used for this purpose.
At least two elements in the thickness direction are sufficient. If calculation time is impor-
tant, a one-layered mesh can also be utilized, leading to slight losses in accuracy. It should
be noted that these findings are obtained for the joints with β ≤ 0.85, i.e., when chord
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face bending governs the behaviour of the joint. According to EN 1993-1-8:2005 [24], this
failure mode is also critical for other loading cases when β ≤ 0.85, including axial loading
and out-of-plane bending. Therefore, the obtained conclusions can be justified also for
these loading cases.

Search of best finite element and number of elements in the thickness direction for
moment resistance

The previous section has shown that at least two C3D8I or C3D20R elements in the thick-
ness direction has to be used to calculate the initial stiffness of tubular joints. This section
determines the most suitable finite element and the required number of layers considering
the whole loading process until the failure of the joint. The study analyses the joints
employed in the previous section. Only C3D8I and C3D20R finite elements are applied
with one-, two- and three-layered mesh. The joints are evaluated by the ultimate moment
resistance, determined as the maximum moment the joint can resist. Every analysis is con-
ducted considering geometrical and material nonlinearity, employing the elastic-perfectly
plastic material model in accordance with Appendix C.6 of EN 1993-1-5:2006 [33]. All
analyses are performed by measuring calculation time on a personal computer with an
Intel Core i7-2600 CPU with 3.40 GHz clock frequency and a 16 GB RAM, using multiple
processors parallelization. Following the conclusions of the previous section, the models
with three quadratic C3D20R elements in the thickness direction are deduced to provide
the most exact moment resistance (Mu,20,3), and other models are compared to them.

Table 2 presents absolute (Mu) and relative (Mu/Mu,20,3) moment resistances as well
as the calculation time obtained from FEM. As expected, the most reliable results are
obtained by using quadratic finite elements (C3D20R), decreasing asymptotically with
the increase of the number of elements in the thickness direction. The models with
one C3D20R element in the thickness direction overestimate resistance by 5%, while the
ones with two C3D20R elements provide almost the same values. The calculation time
is crucial, accounting for at least 5 hours for the three-layered mesh models. From that
point of view, two C3D20R elements in the thickness direction provide the most preferable
solution by the criteria of accuracy and calculation time. Three elements in the thickness
direction bring no reasonable improvement of accuracy, increasing the calculation time
more than two times. These conclusions are in line with the recommendations of [19].

Linear finite elements with incompatible nodes (C3D8I) also provide accurate results.
However, the maximum error of 10% makes them unreliable for numerical simulations,

Table 2. Moment resistance verification

β = 0.25 β = 0.50 β = 0.75

Element Number Mu Mu

Mu,20,3

t Mu Mu

Mu,20,3

t Mu Mu

Mu,20,3

t
type of elements [kNm] [min] [kNm] [min] [kNm] [min]

C3D8I

1 6.60 1.00 8 40.17 1.09 11 83.86 1.05 13
2 6.61 1.00 20 40.60 1.10 28 81.69 1.02 29
3 6.61 1.00 29 40.18 1.09 36 81.95 1.02 55

C3D20R

1 6.63 1.00 38 38.60 1.05 61 83.25 1.04 56
2 6.62 1.00 135 37.19 1.01 122 80.00 1.00 181
3 6.62 1 323 36.75 1 283 80.13 1 400
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even when using three elements in the thickness direction. At the same time, the main
advantage of C3D8I elements is low calculation time: even three C3D8I elements in the
thickness direction are less time-consuming than one C3D20R element. From that point of
view, C3D8I elements can be suggested for quick FE analyses without strict requirements
of accuracy.

Validation of developed FE model

To ensure that the developed FE model can be efficiently employed to predict the struc-
tural behaviour of RHS joints, it is validated with experimental data available in the lit-
erature. The model is constructed following the above findings, with two quadratic solid
elements in the thickness direction, both for the brace and the chord. The validation
evaluates the initial stiffness and resistance of joints under in-plane bending moment and
axial brace loading. As initial imperfections are found to have no influence on the behavior
of tubular joints, they are neglected in the validation. For comparison, the resistance is
also calculated theoretically according to EN 1993-1-8:2005 [24]. In the following figures,
Mpl,exp (Npl,exp), Mpl,FEM (Npl,FEM) and Mpl,theory (Npl,theory) denote, respectively, plastic
bending (axial) resistance determined experimentally, numerically and theoretically.

HAMK tests

The first validation is conducted with the tests of Häme University of Applied Sciences
(HAMK) [40]. The experiments on square hollow section T joints under in-plane bending
moment were performed by varying section dimensions, steel grades and weld sizes. Three
types of welds were analyzed: 6 mm fillet welds, 10 mm fillet welds and 1/2v butt welds.
The details of the joints are presented in Table 3, where the naming of the test specimens
is presented in the format [chord steel grade] [brace steel grade] [weld type]. The joints
are modelled with the measured section dimensions of the specimens. The actual throat
thicknesses of welds were not measured; therefore, the study employs nominal values. The
material properties were obtained from tensile coupon tests.

Figure 11a shows the comparison between the deformation patterns obtained experi-
mentally and numerically for case S420 S420 a6. As can be seen in the figure, the model
efficiently captures the chord face failure and the buckling of chord side walls. The
moment-rotation curves for this case are presented in Figure 11b, and the remaining
cases are considered in Appendix 1. Good agreement is observed between the results
in the elastic phase, with a slight discrepancy in the hardening phase. The most exact
prediction is observed for the joints with 6 mm welds, almost repeating the experimental
moment-rotation curves. The cases with 10 mm welds have the largest visual difference
between the experimental and numerical results in the hardening zone, which can be
probably caused by the difference in the material properties.

The summary of the results is presented in Table 4. As can be seen, the prediction
of the initial rotational stiffness is rather accurate almost for all joints. The largest
errors are observed for cases S500 S500 a6 and S500 S500 a10, which can be caused by
unexpectedly low experimental stiffness in comparison to the corresponding cases with the
same geometry. Bending resistance is predicted accurately, being slightly underestimated
for the joints with 10 mm fillet and butt welds. The largest discrepancy is observed for
the cases with the large braces, i.e., S700 S700 a6 and S700 S700 a10. The experimental
and numerical results correlate well with the theoretical values, particularly for the joints
with butt welds. At the same time, the observed error increases with the rise of the weld
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Table 3. HAMK tests: details of joints

Joint
b0 h0 t0 b1 h1 t1

β
aw E fy0

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [GPa] [MPa]

S420 S420 a6

150 150 8

100 100 8 0.67

6

185 507
S500 S420 a6 100 100 8 0.67 196 602
S500 S500 a6 100 100 8 0.67 196 602
S700 S420 a6 100 100 8 0.67 197 769
S700 S500 a6 100 100 8 0.67 197 769
S700 S700 a6 120 120 8 0.80 197 769

S420 S420 a10

150 150 8

100 100 8 0.67

10

185 507
S500 S420 a10 100 100 8 0.67 196 602
S500 S500 a10 100 100 8 0.67 196 602
S700 S420 a10 100 100 8 0.67 197 769
S700 S500 a10 100 100 8 0.67 197 769
S700 S700 a10 120 120 8 0.80 197 769

S420 S420 1/2v

150 150 8

100 100 8 0.67

butt

185 507
S500 S420 1/2v 100 100 8 0.67 196 602
S500 S500 1/2v 100 100 8 0.67 196 602
S700 S420 1/2v 100 100 8 0.67 197 769
S700 S500 1/2v 100 100 8 0.67 197 769
S700 S700 1/2v 120 120 8 0.80 197 769

size, leading to a significant overestimation of resistance for 10 mm welds. This fact can
be explained by the improving effect of fillet welds: welds enlarge the cross-section of the
brace in the contact area, increasing thus the total length of the yield mechanism and the
resistance of the joint [41]. Currently, this effect is not considered in EN 1993-1-8:2005,
leading to a very conservative theoretical resistance for the joints with large fillet welds.

a)

The actual size of welds was not measured, and nominal values were employed. The
material properties were obtained from tensile coupon tests.

Table 3. HAMK tests: details of joints.

Specimen
Chord [mm] Brace [mm]

β aw

[mm]
E

[GPa]
fy0

[MPa]b0 h0 t0 b1 h1 t1

S420_S420_a6

150 150 8

100 100 8 0.67

6

185 509
S500_S420_a6 100 100 8 0.67 196 594
S500_S500_a6 100 100 8 0.67 196 594
S700_S420_a6 100 100 8 0.67 197 754
S700_S500_a6 100 100 8 0.67 197 754
S700_S700_a6 120 120 8 0.80 197 754
S420_S420_a10

150 150 8

100 100 8 0.67

10

185 509
S500_S420_a10 100 100 8 0.67 196 594
S500_S500_a10 100 100 8 0.67 196 594
S700_S420_a10 100 100 8 0.67 197 754
S700_S500_a10 100 100 8 0.67 197 754
S700_S700_a10 120 120 8 0.80 197 754
S420_S420_1/2v

150 150 8

100 100 8 0.67

butt

185 509
S500_S420_1/2v 100 100 8 0.67 196 594
S500_S500_1/2v 100 100 8 0.67 196 594
S700_S420_1/2v 100 100 8 0.67 197 754
S700_S500_1/2v 100 100 8 0.67 197 754
S700_S700_1/2v 120 120 8 0.80 197 754

a) b)
Figure 10. S420_S420_a6: a) correlation between test and FEM; b) moment-rotation curves.

Figure 10a shows the comparison of the deformation patterns obtained experimentally
and numerically for case S420_S420_a6. As can be seen in the figure, FEM efficiently
captures chord face failure and chord side walls buckling. The moment-rotation curves
for this case are provided in Figure 10b, and the remaining cases are considered in
Appendix. Good agreement is observed between the results in the elastic phase, with a
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Figure 11. S420 S420 a6: a) correlation between test and FEM; b) moment-rotation curves.
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Table 4. HAMK tests: validation

Joint

Sj,ini [kNm/rad] Mpl [kNm]

FEM Test
FEM /

FEM Test Theory
FEM / FEM /

Test Test Theory

S420 S420 a6 1189 1115 1.07 21.2 20.5 18.0 1.04 1.18
S500 S420 a6 1231 1083 1.14 24.3 23.6 19.3 1.03 1.26
S500 S500 a6 1277 995 1.28 25.1 24.7 19.3 1.02 1.30
S700 S420 a6 1231 1082 1.14 28.4 27.1 24.1 1.05 1.18
S700 S500 a6 1257 1108 1.13 29.4 28.9 24.1 1.02 1.22
S700 S700 a6 2178 1990 1.09 43.0 59.0 42.1 0.73 1.02
Average 1.14 0.98 1.19

S420 S420 a10 1681 1692 0.99 29.4 31.8 18.1 0.92 1.63
S500 S420 a10 1762 1701 1.04 33.2 34.9 19.3 0.95 1.72
S500 S500 a10 1837 1452 1.26 35.2 37.3 19.3 0.94 1.82
S700 S420 a10 1603 1521 1.05 36.3 38.5 23.9 0.94 1.52
S700 S500 a10 1736 1705 1.02 39.3 45.7 24.0 0.86 1.64
S700 S700 a10 2242 2268 0.99 44.1 64.0 42.5 0.69 1.04
Average 1.06 0.88 1.56

S420 S420 1/2v 888 893 0.99 15.7 18.2 18.2 0.86 0.86
S500 S420 1/2v 963 977 0.99 18.7 20.9 19.3 0.89 0.97
S500 S500 1/2v 941 1003 0.94 18.6 20.4 19.3 0.91 0.96
S700 S420 1/2v 940 971 0.97 22.5 23.4 24.0 0.96 0.94
S700 S500 1/2v 967 961 1.01 23.0 25.6 24.3 0.90 0.94
S700 S700 1/2v 2091 1990 1.05 43.6 44.7 43.7 0.98 1.00
Average 0.99 0.91 0.94

Tests of TH Karlsruhe and Kobe University

This validation is performed using tests M44 and M45 conducted in the TH Karlsruhe [17]
and tests S12, S23, R2, R4 conducted in the Kobe University [42]. All specimens were
made of cold-formed sections. The moment-rotation curves of the joints are presented
in [26]. The details of the joints are provided in Table 5. The simulation employs a
bi-linear elasto-plastic material model with strain hardening based on the provided yield
and ultimate stresses with the corresponding elongations.

The experimental and numerical curves are presented in Appendix 2, the comparison

Table 5. Tests of TH Karlsruhe and Kobe University: details of joints

Joint
b0 h0 t0 b1 h1 t1

β
aw E fy0

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [GPa] [MPa]

M44 160 160 4 100 100 3 0.63 3 210 420
M45 160 160 5 100 100 3 0.63 3 210 420
S12 200 200 9 150 150 6 0.75 6 210 235
S23 250 250 6 175 175 6 0.70 6 210 235
R2 200 200 6 100 200 6 0.50 6 210 235
R4 200 200 6 152 254 6.4 0.76 6 210 235
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Table 6. Tests of TH Karlsruhe and Kobe University: validation

Joint

Sj,ini [kNm/rad] Mpl [kNm]

FEM Test
FEM /

FEM Test Theory
FEM / FEM /

Test Test Theory

M44 146 130 1.12 2.2 2.6 2.2 0.87 1.04
M45 260 260 1.00 3.7 4.8 3.4 0.78 1.11
S12 2745 2000 1.37 31.2 36.4 21.9 0.86 1.43
S23 953 875 1.09 11.1 13.0 9.9 0.85 1.12
R2 702 625 1.12 10.3 9.4 9.0 1.09 1.14
R4 4626 4000 1.16 31.0 34.3 21.0 0.90 1.48

Average 1.14 0.89 1.22

of the results is provided in Table 6. The numerical simulations are found to slightly
overestimate the initial stiffness of the joints, which can probably be caused by the nominal
dimensions of the sections used in the FE analyses. Experimental plastic resistance is
underestimated by 15-20%, except the case R2. This can be explained by the simplified
bi-linear material model used in the simulation. Compared to theoretical results, all
numerical models demonstrate safe resistance.

Tests of Nizer et al.

The next validation is performed against the tests of Nizer et al. [6]. The tests represent
RHS T joints simultaneously loaded by axial forces in the brace and the chord. All
specimens were made of ASTM-A36 steel, had the same geometry but differed by the
value of the axial force N0 applied in the chord, as shown in Table 7. Joints TN01N0
and TN02N0 differed by the boundary conditions of the chord: the chord ends were free
to rotate for joint TN01N0 but restricted for joint TN02N0. The FE analyses employ a
bi-linear elasto-plastic material model with strain hardening based on the provided yield
and ultimate stresses with the corresponding elongations.

Following the experiments, the axial force in the chord N0 is applied in the FE model
prior to the static brace loading. It should be noted that in the experiments and the
corresponding numerical simulations, the specimens are not vertically supported along
the length of the chord, in contrast to Figure 7. This enables the in-plane bending of
the chord, producing normal stresses on its upper flange. For this reason, theoretical
resistance is calculated considering a chord stress function according to [34].

Table 7. Tests of Nizer et al.: details of joints

Joint
b0 h0 t0 b1 h1 t1

β
aw E fy0 N0

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [GPa] [MPa] [kN]

TN01N0 140 80 4 100 100 3 0.71 5 200 361.9 0
TN02N0 140 80 4 100 100 3 0.71 5 200 361.9 0

TN03N50+ 140 80 4 100 100 3 0.71 5 200 361.9 306.9
TN04N70+ 140 80 4 100 100 3 0.71 5 200 361.9 429.6
TN06N50- 140 80 4 100 100 3 0.71 5 200 361.9 -306.9
TN05N70- 140 80 4 100 100 3 0.71 5 200 361.9 -429.6
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Table 8. Tests of Nizer et al.: validation.

Joint

Cj,ini [kN/mm] Npl [kN]

FEM Test
FEM /

FEM Test Theory
FEM / FEM /

Test Test Theory

TN01N0 140 155 0.90 84.4 84.5 65.5 1.00 1.29
TN02N0 140 280 0.50 84.4 90.1 65.5 0.94 1.29

TN03N50+ 143 280 0.51 93.6 97.9 72.3 0.96 1.29
TN04N70+ 143 350 0.41 84.0 84.1 72.3 1.00 1.16
TN06N50- 139 140 0.99 73.0 68.6 51.1 1.06 1.43
TN05N70- 137 460 0.30 52.6 52.9 45.3 0.99 1.16
Average 0.60 0.99 1.27

The procedure to calculate plastic resistance described in Figure 4b is applied only for
joints TN03N50+ and TN04N70+. The remaining joints demonstrate no clearly observed
hardening phase in their load-displacement curves; therefore, their resistance is found
as equal to the maximum accepted load. The comparison between the experimental
and numerical results is provided in Appendix 3 and summarized in Table 8. The FE
model demonstrates good correlation with the experimental results in terms of resistance.
Compared to theoretical resistance, the numerical values are safe, providing a sufficient
safety margin. At the same time, initial stiffness is noticeably underestimated. This
shows that the developed FE model is less sensitive to chord loading: while experimental
stiffness is significantly affected by axial loading, numerical model provides almost the
same values regardless the applied chord loading.

Tests of Zhao & Hancock

The final validation is performed by using the results of Zhao & Hancock [43]. The
paper provides the experimental results of RHS T joints under pure axial load as well as
combined axial force and bending moment. Load-displacement curves under pure axial
load are provided only for three joints, which details are presented in Table 9. The
theoretical resistance of the joints is provided in [28], as well as the improved chord yield
stress for joint S1B1C12.

The simulation employs a bi-linear elasto-plastic material model with strain hardening
based on the provided yield and ultimate stress with corresponding elongations. During
the loading, the joints were located at the stiff floor, eliminating chord bending. Simi-
larly, the numerical simulations employ a contact interaction with a ”rigid floor”, shown
in Figure 7a. The comparison between the experimental and numerical results is illus-
trated in Appendix 4 and summarized in Table 10. As can be seen, the developed FE
model accurately predicts the structural behaviour of the joints, both in relation to initial

Table 9. Tests of Zhao & Hancock: details of joints

Joint
b0 h0 t0 b1 h1 t1

β
aw E fy0

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [GPa] [MPa]

S1B1C11 51 102 4.9 51 51 4.9 1.0 4.6 200 379
S1B1C12 51 102 3.2 51 51 4.9 1.0 4.6 200 373
S1B1C23 102 102 4.0 51 51 4.9 0.5 4.6 200 417
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Table 10. Tests of Zhao & Hancock: validation

Joint

Cj,ini [kN/mm] Npl [kN]

FEM Test
FEM /

FEM Test Theory
FEM / FEM /

Test Test Theory

S1B1C11 619 667 0.93 291.4 307.0 198.0 0.95 1.47
S1B1C12 356 333 1.07 154.9 163.0 80.0 0.95 1.94
S1B1C23 69 50 1.38 60.7 65.6 50.6 0.92 1.20
Average 1.13 0.94 1.54

stiffness and axial resistance. Compared to the theoretical results, the numerical values
provide sufficiently safe resistance.

Conclusions

This paper develops a finite element model to analyze welded RHS T joints. The recom-
mendations are provided in relation to the suitable lengths of the connected members,
meshing, the modelling of welds and material properties. The paper describes the de-
tailed procedure for extracting the local deformations of the joint from the results of FE
analyses. In addition, the study proposes three approaches to eliminate bending of the
chord resulted from axial loading.

Attention has been paid particularly on the selection of the suitable finite element
and the number of elements in the thickness direction. The conducted analyses show
that the choice depends on the requested outcome of the analysis. For initial stiffness,
two quadratic solid finite elements with reduced integration in the thickness direction
are sufficient. Linear solid elements with incompatible modes can also be used for that
purpose, provided that a regular mesh is used. Due to comparatively short calculation
time, linear solid elements can present a very efficient tool in engineering tasks based on
the extensive computations of the initial stiffness of joints.

At the same time, when the behavior of the joint is considered on the whole phase of
loading until its failure, linear solid elements demonstrate errors that cannot be neglected.
For this purpose, quadratic elements with reduced integration are the most desirable with
at least two elements in the thickness direction. Application of three-layered mesh brings
no reasonable improvements in results but severely enlarges calculation time.

The constructed FE model has been validated with the series of experimental tests
under in-plane bending moment and axial brace loading. The conducted validation shows
that the developed FE model accurately predicts the initial stiffness and resistance of
joints. Compared to the theoretical approach based on the current Eurocode, numerical
resistance is sufficiently safe. The conducted validation justifies the applicability of the
model for further investigations, including extensive parametric studies.
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Appendix 1. Load-displacement curves. HAMK tests
Appendix. Moment-rotation curves, HAMK tests
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Appendix 2. Load-displacement curves. Tests of TH Karlsruhe and Kobe University

Figure 11. Tests of TH Karlsruhe and Kobe University.
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Appendix 3. Load-displacement curves. Tests of Nizer et al.

Figure 12. Tests of Nizer et al.
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Appendix 4. Load-displacement curves. Tests of Zhao & Hancock

Figure 13. Tests of Zhao & Hancock.

Conclusions

This paper develops a numerical model for RHS T joints. The recommendations are
provided in relation to the suitable lengths of the connected members, meshing, the
modelling of welds and material properties. The paper provides the detailed procedure to
extract the local deformation of the joint from the results of FE analyses. In addition, the
study proposes three approaches to eliminate bending of the chord resulted from axial
loading.

Attention has been paid particularly on the selection of the suitable finite element and
the number of elements in the thickness direction. The conducted analyses show that the
choice depends on the requested outcome of the analysis. For initial stiffness, two
quadratic solid finite elements with reduced integration in the thickness direction are
sufficient. Linear solid elements with incompatible modes can also be used for that
purpose, provided that a regular mesh is used. Due to comparatively short calculation
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