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Summary. JuliaFEM is an open source �nite element method solver written in the Julia
language. This paper presents an implementation of two common model reduction methods: the
Guyan reduction and the Craig-Bampton method. The goal was to implement these algorithms
to the JuliaFEM platform and demonstrate that the code works correctly. This paper �rst
describes the JuliaFEM concept brie�y after which it presents the theory of model reduction,
and �nally, it demonstrates the implemented functions in an example model. This paper includes
instructions for using the implemented algorithms, and reference the code itself in GitHub. The
reduced sti�ness and mass matrices give the same results in both static and dynamic analyses
as the original matrices, which proves that the code works correctly. The code runs smoothly on
relatively large model of 12.6 million degrees of freedom. In future, damping could be included
in the dynamic condensation now that it has been shown to work.
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Introduction

JuliaFEM is an open-source �nite element solver written in the Julia programming lan-
guage [1]. It enables �exible simulation models, and it takes advantage of the scripting
language interface which makes it easy to learn and embrace. It is a real Julia language
programming environment where Structural Analyst or Researcher can combine FEM
simulation with other analyses and work-�ows. These features introduce an open source
platform for testing new ideas and simulation models to the academic world in the �nite
element domain. [2, 3]

The JuliaFEM is installable meta-package, which means it is a collection of other
Julia packages, which it installs as a dependency. ModelReduction.jl is one of the sub
packages included in the JuliaFEM platform. This work aimed to implement two com-
mon model reduction methods into ModelReduction.jl: The Guyan reduction and the
Craig-Bampton methods which are useful in dynamic analyses and mandatory in the
commercial multi-body simulation software like AVL Excite Power Unit, which use large
�nite element models [4�9] or perform some optimization [10]. As an example, Irvine
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has implemented these methods using Matlab [11]. The ModelReduction.jl package is
available from GitHub.

This paper introduces brie�y the Guyan reduction and the Craig-Bampton method
and how to perform them with JuliaFEM with the help of a test model. The implemented
code itself and instructions for using it are included as well.

As mentioned, FE problems widely use model reduction methods. For instance, �exible
multibody dynamics problems [12], problems including high-speed rotating structures [13],
�uid-structure interaction problems [14] and problems with localized nonlinearities, such
as cracks [15], bene�t signi�cantly from model reduction. Model reduction is also useful in
vibration analyses, for instance in vibration isolation modeling [16] and problems including
stochastic response [17].

Structural Analyst or Researcher can apply the reduction methods to any element
types, and the types and element properties can vary in the FE domain. Small and
higher order elements are useful when the results change rapidly, and bigger size, low-
order [18, 19] elements are usable when the results are more constant [20].

Theory

Especially dynamic simulations with �exible bodies require signi�cant computational re-
sources. The system of equations is likely to contain a substantial number, typically of
the order of millions of degrees of freedom, and require extensive computational resources
to solve. To reduce the computational cost model reduction techniques are commonly
used. [21, 22]

The model reduction methods divide into static and dynamic condensation, and dy-
namic condensation is a generalization of the static condensation. The following chapters
present two of the most used FE model reduction techniques for both static and dynamic
analyses - the Guyan reduction and the Craig-Bampton method.

Substructures and superelements

Substructuring is the process of decomposing a large FE model into smaller, component-
based models [23]. It means removing elements that are unnecessary for the analysis
and building larger elements - so-called superelements - out of them. These component
models are called the substructures of the full system. For example, [24] views a subset
of adjacent �nite elements as one superelement or substructure.

Researchers use substructuring in component mode synthesis (CMS), where individual
substructure problems are �rst solved, and then the coupling of interfaces is built [25].
CMS has many advantages in dynamic analyses especially when the assemblies are large
and complex. Literature also calls substructuring and CMS as coupling problems or
subsystem addition [26]. One of the primary reasons for substructuring in dynamics
problems is to reduce the number of degrees of freedom of the structure [27]. Fewer
degrees of freedom requires less computational resources than the original model.

The main steps of the substructuring process are to divide the whole structure into
some substructures, to obtain reduced-order models of the components, and then to as-
semble a reduced-order model of the entire structure [28]. Substructuring allows the
evaluation of the dynamic behavior of large and complex structures. Also, local dynamic
behavior can be recognized more easily by analyzing the reduced subsystems than when
the entire system is analyzed [29].
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Guyan reduction

Static reduction, also known as static condensation, Guyan condensation or Guyan re-
duction, is the most popular model reduction method presented by R.J. Guyan [30]. It
is a method, which ignores inertia e�ects of certain degrees of freedom while obtaining
component modes [31]. Guyan reduction is the basis for several other �nite element
substructuring techniques [32].

The Guyan reduction method applied in FE techniques reduces the FE model by
condensing internal, de�ned as a slave, degrees of freedom. Speci�cally, the technique
removes the degrees of freedom located at the substructure's boundary, which is the local-
to-global interface. The remaining degrees of freedom de�ned as a master and located
at the boundary, retain the sti�ness of the local structure but omit the inertial terms to
create a denser and thus more e�cient representation, at the cost of accuracy for non-
static loading conditions. The method is only accurate for sti�ness reduction since Guyan
reduction ignores inertial forces. [23]

The static equilibrium equation is:

Ku = f , (1)

where K is the global sti�ness matrix, u presents the nodal degrees of freedom and f is
the nodal force vector of the static equilibrium problem.

By dividing the static equilibrium equation (1) with regards to loaded (master) and
unloaded (slave) degrees of freedom so that the forces on the unloaded degrees of freedom
are zero, the static equilibrium equation becomes:[

KMM KMS

KSM KSS

] [
uM

uS

]
=

[
fM
0

]
, (2)

where KMM, KMS, KSM, and KSS are submatrices of K and KMM is the part of K that
remains after the reduction. If only uM is desired, K can be reduced as follows:

KreduM = fM, (3)

where Kred is the �nal reduced sti�ness matrix. Kred is obtained by writing out the set
of equations as follows:

KMMuM + KMSuS = fM, (4)

KSMuM + KSSuS = 0. (5)

Equation (5) can be solved for uS assuming that KSS is invertible:

−K−1
SSKSMuM = uS, (6)

moreover, substituting into (4) gives

KMMuM − KMSK−1
SSKSMuM = fM. (7)

Now Kred can be solved as follows:

KRED = KMM − KMSK−1
SSKSM, (8)

where Kred is the reduced sti�ness matrix. Structural Analyst or Researcher may choose
to eliminate any component of u if the corresponding component of f is zero. The above
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system of linear equations is equivalent to the original equation (1), but it is expressed
solely by the master degrees of freedom. Thus, Guyan reduction leads to a reduced system
by condensing away the slave degrees of freedom. Since sparse matrix inversions require
lots of computational resources, factorization methods, such as Cholesky decomposition
can be applied to obtain K−1

SS and in such way reduce the calculation time.
In Julia language, the Guyan reduction algorithm implementation is only a few lines

of code. The code listing of the implementation is available at [33].

The Craig-Bampton method

The Craig-Bampton process is a dynamic reduction technique introduced by Roy R. Craig
Jr and Mervyn C. C. Bampton [34] that is widely used to assemble large-scale models
(millions of degrees of freedom) that are far too computationally expensive to be modeled
entirely [35].

In the Craig-Bampton process, Structural Analyst or Researcher �rst separates the
degrees of freedom in the original FE model into retained (master) and truncated (slave)
degrees of freedom in a similar way as in the Guyan reduction. There are algorithms
to help to select the master and slave degrees of freedom [36]. Then, by condensing the
sti�ness and inertial e�ects for the slave degrees of freedom into master degrees of freedom,
the reduced model is constructed [37].

The Craig-Bampton method reduces the mass and sti�ness matrices of the FE model
by expressing the master modes in physical coordinates and the elastic modes in modal
coordinates. The method reduces the mass and sti�ness matrices which will contain
mode shape information of the low-frequency response modes of the model. The Craig-
Bampton method is especially useful in dynamic analyses that include large �nite element
models. [20, 38]

This implementation does not include damping. The equation of motion is:

Mü + Ku = f . (9)

In the Craig-Bampton method the matrices are �rst partitioned into master nodes R and
slave nodes L:

u =

[
uR

uL

]
. (10)

Equation (9) becomes:[
MRR MRL

MLR MLL

] [
üR

üL

]
+

[
KRR KRL

KLR KLL

] [
uR

uL

]
= f . (11)

The division of M and K into submatrices is similar as for K in the Guyan reduction.
The degrees of freedom transform into hybrid coordinates:[

uR

uL

]
=

[
I 0

XR XL

] [
uR

qm

]
, (12)

where I is an identity matrix, XR is a transformation matrix which relates rigid body
physical displacements at the interface uR to physical displacements of the elastic degrees
of freedom uL. Also, XL is a matrix of eigenvectors called normal mode shapes. It
is a matrix of eigenvectors calculated from KLL and qm is a column vector of modal
displacements. It is dimensionless, so all units are contained in XL. When performing
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the Craig-Bampton method, XL is the matrix that causes the reduction of the �nal result
matrices: most columns are eigenvectors to be deleted so that the matrix size reduces and
the size of the �nal matrices depends on the size of this matrix.

Now equation (11) can be rewritten as[
MRR MRL

MRR MLL

] [
I 0

XR XL

] [
üR

q̈m

]
+

[
KRR KRL

KLR KLL

] [
I 0

XR XL

] [
uR

qm

]
=

[
fR
0

]
. (13)

To determine XR all master degrees of freedom are �xed limiting consideration to a static
problem (üR = üL = 0). Equation (11) reduces to:

KLRuR + KLLuL = 0. (14)

The internal degrees of freedom are:

uL = −K−1
LLKLRuR = XRuR, (15)

where
XR = −K−1

LLKLR. (16)

In the determination of XL the master degrees of freedom are �xed. The equation of
motion (9) reduces to:

MLLüL + KLLuL = 0. (17)

By assuming harmonic response (uL = XLqme
iωt) unforced harmonic motion of the grounded

structure can be expressed as:

(KLL − ΛMLL)XL = 0, (18)

where Λ is a diagonal matrix containing the eigenvalues of (17). The eigenvectors in XL

can be normalized:
XT

LMLLXL = I, (19)

XT
LKLLXL = Λ. (20)

Since XR in (16) contains K−1
LL, an inverse of KLL, determining it for sparse matrices

will require lots of computing resources, and it will eventually become a problem with
large models. It is avoidable by determining K−1

LL as follows:

K−1
LL = XLΛ−1XT

L . (21)

Now (16) can be calculated as:

XR = −XLΛ−1XT
LKLR. (22)

As one can see this expression also includes an inverse, but it is an inverse of Λ which
is a diagonal matrix, so it only has nonzero elements on its diagonal and therefore needs
much less computing power than the computing of K−1

LL.
To get the equations of motion of the system the equation (13) is multiplied with the

transpose of the coordinate transformation matrix in (12) as follows:[
I XT

R

0 XT
L

] [
MRR MRL

MLR MLL

] [
I 0

XR XL

] [
üR

q̈m

]
+

[
I XT

R

0 XT
L

] [
KRR KRL

KLR KLL

] [
I 0

XR XL

] [
uR

qm

]
=

[
I XT

R

0 XT
L

] [
fR
0

]. (23)
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By simplifying, the equation of motion (9) becomes[
MRR + MRLXR + XT

RMLR + XT
RMLLXR MRLXL + XT

RMLLXL

XT
LMLR + XT

LMLLXR I

] [
üR

q̈m

]
+

[
KRR + KRLXR 0

0 Λ

] [
uR

qm

]
=

[
fR
0

]. (24)

Above is the �nal form of the dynamic equation of motion for the Craig-Bampton method
when the generalized mass matrix is normalized, damping is ignored, and only boundary
(master) forces are in consideration, which is true for most practical problems [38]. For
the JuliaFEM implementation equation (24) is expressed as:[

MBB MBM

MMB MMM

] [
üR

q̈m

]
+

[
KBB KBM

KMB KMM

] [
uR

qm

]
=

[
fR
0

]
, (25)

where
MBB = MRR + MRLXR + XT

RMLR + XT
RMLLXR,

MBM = MRLXL + XT
RMLLXL,

MMB = XT
LMLR + XT

LMLLXR,

MMM = I,

KBB = KRR + KRLXR,

KBM = 0,

KMB = 0,

KMM = Λ.
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The code listing of the Craig-Bampton method JuliaFEM implementation is available
at [33].

Test model

The JuliaFEM model reduction algorithms are tested on an example model to verify the
codes work correctly.

The example model is a 1-dimensional rod with four elements and �ve nodes. The
rod is �xed at node 1, and it also has four roller supports at nodes 2 - 5. The rollers
are not necessary since the model is a rod, but they included in the model since in
some commercial FEM programs the rod dividing nodes are interpreted as joints, so that
horizontal support is needed when performing the dynamic analysis. Because of these
supports, node 1 has 0 degrees of freedom and nodes 2 - 5 have 1 degree of freedom.
There is a horizontal driving force at node 5. The model is presented in Figure 1 where
the length of one element is L = 0.25 and the driving force at node 5 is F = 1 N.

Figure 1: The original test model.

The sti�ness and the lumped mass matrix of the model are the following:

K =


1 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 , (26)

M =


1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

 . (27)

It is evident that the model does not need as many elements. Since the model is a
rod, only one element would be enough to give the correct displacement at node 5. The
model reduction will reduce the mesh so that only one element is left.

Before the model reduction, authors calculated the standard static and modal analyses.
Then the model reduction methods were performed with the implemented functions, and
the authors performed analyses with the reduced matrices. Finally, authors compared the
results of both analyses.
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Static analysis

For the example model, equation (1) is the following without considering boundary con-
ditions: 

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1




0
1
2
3
4

 =


−1
0
0
0
1

, (28)

where the u-vector is the solution of the equation (1). Only the displacements u1 and
u5 are globally meaningful. The static condensation will remove the undesired degrees of
freedom and give the same result with much smaller matrices.

Modal analysis

The global sti�ness and mass matrices for the example model, when the boundary condi-
tions are taken to account, are the following:

K =


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , (29)

M =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

 . (30)

The equation of motion (9) will give the eigenvalue problem:

Kx = ω2Mx, (31)

yielding the eigenmodes x of the model and the eigenvalues whose square roots are the
angular eigenfrequencies ω. For the example model the eigenvalues calculated from (31)
are the following: 

ω2
1 = 0.0761

ω2
2 = 0.6173

ω2
3 = 1.3827

ω2
4 = 1.9239

. (32)

The calculation of natural frequencies is as follows:

fn =
ωn

2π
, (33)

where fn are natural frequencies. Equation (33) gives the following frequencies for the
example model: 

f1 = 0.044

f2 = 0.125

f3 = 0.187

f4 = 0.221

[Hz]. (34)
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The dynamic reduction will condense the sti�ness and mass matrices of the model and
give fewer eigenmodes, but the new modes are among the original low-frequency response
modes.

Reduction methods applied to the example model

Now the Guyan reduction and the Craig-Bampton method will be applied to the example
model. The substructuring will remove nodes 2 - 4 and there will be only one element left
� the superelement. Figure 2 presents the new structure. The new variables of the model
are the same except the length L of the element since it now refers to the length L = 1.0
of the whole rod. The following paragraphs present detailed steps of the process leading
to this superelement.

Figure 2: The reduced model.

Guyan reduction by hand

For the example model, the submatrices in (2) will be the following since only u1 and u5

are desired degrees of freedom. Figure 3 shows how the model's sti�ness matrix (26) is
divided into submatrices by the desired degrees of freedom.

KMM =

[
1 0
0 1

]
, (35)

KMS =

[
−1 0 0
0 0 −1

]
, (36)

KSM =

 −1 0
0 0
0 −1

 , (37)

KSS =

 2 −1 0
−1 2 −1
0 −1 2

 . (38)

Figure 3: Dividing K into submatrices.
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Now equation (8) becomes the following:

Kred =

[
1 0
0 1

]
−
[
−1 0 0
0 0 −1

]
·

 2 −1 0
−1 2 −1
0 −1 2

−1

·

 −1 0
0 0
0 −1

 , (39)

which gives

Kred =

[
1
4

−1
4

−1
4

1
4

]
. (40)

The equation (3) with Kred being given by[
1
4

−1
4

−1
4

1
4

] [
0
4

]
=

[
−1
1

]
, (41)

can now be solved for u and f to obtain u1 = 0 and u5 = 4. The result is in agreement
with the solution vector in (28) for the chosen master unknowns.

Guyan reduction applied to the example model

Instructions regarding the Guyan reduction function, included in the ModelReduction.jl
subpackage of the JuliaFEM platform, are presented next. The following example of using
the function is Julia syntax. The �rst step is to install ModelReduction.jl package. Then
the Guyan reduction function usage is as follows:

julia> Pkg.add("ModelReduction")

julia> using ModelReduction

julia> K = [ 1 -1 0 0 0;

-1 2 -1 0 0;

0 -1 2 -1 0;

0 0 -1 2 -1;

0 0 0 -1 1]

julia> m = [1, 5]; s = [2, 3, 4]

julia> Kred = ModelReduction.guyan_reduction(K, m, s)

2x2 ArrayFloat64,2:

0.25 -0.25

-0.25 0.25,

where K, m, and s are original sti�ness matrix, master nodes, and slave nodes respectively.
When Structural Analyst or Researcher uses the subpackage ModelReduction.jl of the
JuliaFEM platform, the Guyan reduction is applied by simply calling the Guyan reduction
function guyan_reduction(), which gives one reduced matrix as a result. Kred is the
reduced sti�ness matrix of the model.
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The Craig-Bampton method applied to the example model

Next example demonstrates how to use the Craig-Bampton function included in the Mod-
elReduction.jl subpackage of the JuliaFEM platform. The following example is Julia
syntax and demonstrates the use of reduction function to the example model.

First, the ModelReduction.jl package must be installed (if it is not yet the case) and
the following variables need to be de�ned:

julia> Pkg.add("ModelReduction")

julia> using ModelReduction

julia> K = [2 -1 0 0;

-1 2 -1 0;

0 -1 2 -1;

0 0 -1 1];

julia> M = [2 0 0 0;

0 2 0 0;

0 0 2 0;

0 0 0 1];

julia> r = [4]; l = [1, 2, 3]; n = 1;

julia> Mred, Kred = ModelReduction.craig_bampton(K, M, r, l, n)

([2.75 -1.20711; -1.20711 1.0], [0.25 0.0; 0.0 0.292893]),

where K, M, r and l and n are original sti�ness matrix, original mass matrix, master
degrees of freedom, slave degrees of freedom and the number of the internal modes to
keep respectively. Users may choose r, and l the way they wish and n so that n ≤
length of l, remembering that the size of these variables will a�ect the size of the result
matrices so that a small n gives small matrices. When the subpackage ModelReduction.jl
of the JuliaFEM platform is used, the Craig-Bampton method is applied by simply calling
the Craig-Bampton function craig_bampton(), which gives two matrices as an output.
Mred is the reduced mass matrix and Kred is the reduced sti�ness matrix of the model.
The sizes of the reduced matrices are (r+n)x(r+n). The number of modes that is to be
computed from the reduced matrices is r+n.

Table 1 shows the natural frequencies of the example model computed with the reduced
matrices with di�erent values of n compared to the frequencies computed with the original
sti�ness and mass matrices.

Table 1: The natural frequencies computed with the original K and M compared to the
frequencies computed with Kred and Mred with di�erent sizes of n.

Mode Original, f [Hz] Reduced, n=3 Reduced, n=2 Reduced, n=1

1 0.044 0.044 0.044 0.044
2 0.125 0.125 0.125 0.137
3 0.187 0.187 0.194 -
4 0.221 0.221 - -
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Even though the example model is quite small, Table 1 shows that the di�erence
between the frequencies calculated with the reduced matrices and the original matrices
increases when n decreases. The quality of the eigenvalue approximation will decrease as
the mode number increases.

Large examples

In the following the Craig-Bampton method in ModelReduction.jl is performed on large
scale models. The �rst example is is a 3D-model of a bracket that is attached to two
adapter plates via tie contacts and �xed from the plates. The original model has almost
300 000 degrees of freedom, but after performing the reduction, only about 200 degrees
of freedom remains. Figure 4 presents the model and the locations of the master degrees
of freedom.

Natural frequencies have been calculated before with JuliaFEM to this example [3].
Table 2 shows the �ve lowest frequencies calculated with the reduced matrices compared
to the original frequencies and the di�erence between them in percent when the number
of master degrees of freedom is 192 and using ten of the generalized eigenvalues. The
dimensions of the sti�ness and mass matrices reduce from 293310 to 202. Figure 5 presents
the �rst eigenmode of the bracket. The source code in Julia syntax for the model reduction
and natural frequency analysis as shown in listing 1.

Figure 4: The bracket model with nearly 300 000 degrees of freedom and the locations
from where the master degrees of freedom were chosen [3].
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Figure 5: The �rst eigenmode of the bracket. Frequency f = 111.38 Hz.

Table 2: Natural frequencies of the bracket compared to the natural frequencies of the
reduced model.

Mode Original f [Hz] Reduced f [Hz] Di�erence [%]

1 111.383 111.377 0.006
2 155.030 155.029 0.001
3 215.399 215.480 -0.038
4 358.761 358.793 -0.008
5 409.654 410.932 -0.312

Code Listing 1 Model reduction with JuliaFEM

1 using ModelReduction
2 using JuliaFEM
3 using JuliaFEM.Preprocess
4 using JuliaFEM.Postprocess
5 using JuliaFEM.Abaqus: create_surface_elements
6
7 # Read the mesh
8 datadir = joinpath(Pkg.dir("ModelReduction"),
9 "test", "test_model_reduction_craig_bampton")

10 mesh = abaqus_read_mesh(joinpath(datadir , "model.inp"))
11
12 # Create two �eld problems with di�erent material properties
13 bracket = Problem(Elasticity , "LDU_Bracket", 3)
14 bracket.elements = create_elements(mesh , "LDUBracket")
15 update !( bracket.elements , "youngs modulus", 165.0E3)
16 update !( bracket.elements , "poissons ratio", 0.275)
17 update !( bracket.elements , "density", 7.10E -9)
18 plate = Problem(Elasticity , "AdapterPlate", 3)
19 plate.elements = create_elements(mesh ,
20 "Adapterplate1", "Adapterplate2")
21 update !( plate.elements , "youngs modulus", 208.0E3)
22 update !( plate.elements , "poissons ratio", 0.30)
23 update !( plate.elements , "density", 7.80E -9)
24
25 # Create boundary conditions from node sets
26 fixed = Problem(Dirichlet , "fixed", 3, "displacement")
27 fixed_nodes = mesh.node_sets [: FIXED]
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28 fixed.elements = [Element(Poi1 , [nid]) for nid in fixed_nodes]
29 update !( fixed.elements , "geometry", mesh.nodes)
30 update !( fixed.elements , "displacement 1", 0.0)
31 update !( fixed.elements , "displacement 2", 0.0)
32 update !( fixed.elements , "displacement 3", 0.0)
33
34 """ A helper function to create tie contacts. """
35 function create_interface(mesh::Mesh , slave ::String , master :: String)
36 interface = Problem(Mortar , "tie contact", 3, "displacement")
37 interface.properties.dual_basis = false
38 slave_elements = create_surface_elements(mesh , slave)
39 master_elements = create_surface_elements(mesh , master)
40 update !( slave_elements , "master elements", master_elements)
41 interface.elements = [slave_elements; master_elements]
42 return interface
43 end
44
45 # Call the helper function to create tie contacts
46 tie1 = create_interface(mesh ,
47 "LDUBracketToAdapterplate1",
48 "Adapterplate1ToLDUBracket")
49 tie2 = create_interface(mesh ,
50 "LDUBracketToAdapterplate2",
51 "Adapterplate2ToLDUBracket")
52
53 # Reduce the model with the Craig-Bampton method
54 cb = Analysis(CraigBampton)
55 #Master nodes = nodes from the node set BORDER
56 cb.properties.r_nodes = r_nodes = collect(mesh.node_sets [: BORDER ])
57 cb.properties.l_nodes = setdiff(keys(mesh.nodes), r_nodes)
58 add_problems !(cb, [bracket , plate , fixed , tie1 , tie2])
59 run!(cb)
60
61 # Calculate 5 �rst eigenvalues with the reduced matrices
62 w_, X_ = eigs(cb.properties.K, cb.properties.M; which=:SM , nev=5)
63 w_ = sqrt.(real(w_))
64 info("Eigenvalues of the reduced system [Hz]: ", w_/(2*pi))

Another even bigger example is an industrial sized model of about 12.6 million degrees
of freedom [2] from which only 12 degrees of freedom were kept. All calculations were
performed with JuliaFEM. The model and the locations, from where the master degrees of
freedom where chosen, are presented in Figure 6 and the di�erence between the four �rst
�exible original natural frequencies and frequencies calculated with the reduced matrices
is presented in Table 3. The �rst eigenmode of this model is presented in Figure 7.
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Figure 6: The industrial sized model with 12.6 million degrees of freedom and the locations
from where the master degrees of freedom were chosen [2].

Figure 7: The �rst eigenmode of the industrial sized model .
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Table 3: The di�erence between frequencies of the industrial size model compared to the
natural frequencies of the reduced model in percent.

Mode Di�erence [%]

1 0.376
2 0.241
3 0.015
4 16.309

Conclusions

This paper presents the Guyan and Craig-Bampton methods implementations in the Ju-
liaFEM open source platform for �nite element modeling development. Also, it demon-
strates how compelling the Julia programming language is for scienti�c simulations as
well as how robust the JuliaFEM platform is for �nite element method development. Just
a few lines of code implements a new missing feature, and the correct use of Julia will
guarantee a speed close to that allowed by the C-language.

The condensed sti�ness and mass matrices give the same results as the original matri-
ces which prove that the implemented algorithms work correctly. The inaccuracy of the
dynamic condensation increases when the number of retained internal modes decreases,
and it also depends on selected master degrees of freedom. The lowest frequencies calcu-
lated with the condensed matrices are the most accurate.
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