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Buckling length of a frame member

Teemu Tiainen1 and Markku Heinisuo

Summary. In the design of steel frames, the definition of buckling length of its members is a
basic task. Computers can be used to calculate the eigenmodes and corresponding eigenvalues
for the frame and using these the buckling length of the members can be defined by using the
well-known Euler’s equation. However, it is not always easy to say, which eigenmode should
be used for the definition of the buckling length of a specific member. Conservatively, the
lowest positive eigenvalue can be used for all members. In this paper, two methods to define
the buckling length of a specific member are presented. The first one uses geometric stiffness
matrix locally and the other one uses strain energy measures to identify members taking part
in a buckling mode. The applicability of the methods is shown in several numerical examples.
Both methods can be implemented into automated frame design, removing one big gap in the
integrated design. This is essential when optimization of frames is considered.
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Introduction

In the code-based structural design, the buckling length (also effective length) or load of
a member is still an important design parameter. For certain structures, the design codes
and standards give values for the length factors, as is the case with tubular trusses in EN
1993-1-1 for example, but in general the task is left to the designer.

Multiple methods have been proposed for finding the effective length of a frame mem-
ber. Widely used simplified approach has been presented by Dumonteil [1]. In this
contribution, the transcendental equation is solved approximately with simplified formu-
las. Multiple extensions for this work have been carried out by several other authors. For
example, semi-rigid joints have been considered in [5]. Webber et al. [8] has proposed an
extension to cover the effect of axial force in columns adjoining the considered member
as well as the effect of axial force in other columns in the same floor. In the examples, it
is shown that this approach gives very accurate values in comparison to results given by
a finite element software.

Even if the presented simplified methods can be considered to be accurate enough to be
applicable with design codes, they do not necessarily fit well in integrated design systems.
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For example, in approach proposed by Webber et al., the user needs to identify other
columns in the floor which is not always straightforward task in a complicated structure.

It should also be noted that according to standards, such as the EN 1993-1-1, the con-
cept of buckling length is not needed if geometrically non-linear analysis is employed. How-
ever, application of non-linear models will result in greater computational effort needed
for the analysis. In case of a single analysis, this is clearly not a problem with contem-
porary computational tools. However, when optimization is performed the analysis needs
to be carried out multiple – even thousands of – times.

Therefore, in this contribution, two approaches for a programmable procedure to assess
the effective length are presented. The methods cannot practically be used with hand
calculation but need a finite element code that can be altered. However, the routines
needed for the proposed methods are relatively easy to implement for an experienced user.
The paper is organized as follows. The concept of buckling length and the methods are
presented in the following sections and their performance is evaluated in three numerical
examples.

Linear stability analysis and buckling length

Typical approach using linear stability theory for elastic buckling yields the well-known
linear system of equations

f = Ku (1)

where f is the vector of nodal forces, K is the stiffness matrix, to be solved for nodal
displacements u. With the nodal displacements, respective internal forces in the elements
can be calculated

f e = keue + re (2)

where f e is the vector of internal forces in element e, ke is the stiffness matrix of element
e, ue is the vector of displacements for the element e and re is the vector of equivalent
external nodal loads.

For the linear stability analysis, the axial forces in each element are picked to form a
geometrical stiffness matrix Kg which is used for writing an eigenvalue problem

(K + λKg)q = 0 (3)

where λ is the eigenvalue and q is the respective eigenvector representing the buckling
mode.

When assessing the buckling length of a single member with the finite element approach
it should be recognized which eigenpair should be used. Let us assume it is pair with
eigenvalue λj for member i.

The critical axial force in flexural buckling by axis y is defined by

Ncr,y =
π2EIy
L2
cr,y

(4)

where E is the Young’s modulus for the material, Iy is the second moment of the section
in the plane of buckling and Lcr,y is the critical length or buckling length for buckling
about y axis. Nomenclature and axis definition follow those of EN 1993-1-1 (see Fig. 1).
From this expression, the buckling length can be solved

Lcr,y = π

√
EIy
Ncr,y

(5)
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Figure 1: Local axes definition according to EN 1993-1-1 for a) I section b) rectangular
hollow section.
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Figure 2: Euler buckling cases.

On the other hand, for member i, the buckling force can be expressed with eigenvalue
as Ncr,y,i = λj |Ni|, thus

Lcr,y = π

√
EIy
λj |Ni|

(6)

The buckling length can be best understood when it is compared to the member system
length Lsys

2. This can be assessed by formula

Lcr,y = kLsys (7)

where k is a buckling length factor for given direction of buckling (also referred to as
K-factor in literature). In the well-known Euler cases the factor gets values shown in
Tab. 2 but typical members in real frames or other structures rarely fit these support
conditions.

Proposed approach with local geometric stiffness

To help the task of choosing the correct eigenpair, the first proposed idea is to include
only the finite elements in the evaluated member in the eigenproblem(

K + λKi
g

)
q = 0 (8)

2The system length is a concept used by EN 1993-1-1. The length means member length in the
mechanical model.
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in which
Ki

g =
∑

Ke
g (9)

in which the sum is taken over elements belonging to member i.
This implies that instead of one eigenproblem, the design engineer should solve as

many eigenproblems as there are compressed members in the structure. However, it is
very straightforward that only the lowest positive eigenvalue from each analysis is used.

Proposed approach with strain energy measure

The second proposed approach is based on strain energy. In the well-known linear finite
element framework, the element strain energy is calculated as

Ee =
1

2
qTkeq (10)

where ke is the element stiffness matrix and q is the vector of displacements. Moreover,
the member strain energy can be calculated as

Em =
1

2
qT
∑

keq (11)

Respectively, for the whole structure, the total strain energy can be calculated when
the global stiffness matrix K is used

E =
1

2
qTKq (12)

The ratio for each member in a deformed shape can be thus calculated as

Rm =
Em

E
(13)

This can be done separately for each member and each eigenmode with positive eigen-
value. The problem related to scaling of eigenvectors disappears when only the relation
to total strain energy is considered.

To judge whether a single member is taking part in a buckling mode, it is assumed
that the member will have a substantial share of the total strain energy. The share which
can be considered substantial is, however, not easily judged. The initial proposal for the
criterion is

Rm ≥
1

n
(14)

where n is number of members in the structure.
The rationale behind the proposal is purely empirical, based on manual trials on

several rectangular 2D frames. However, more rigorous testing might be needed to find
out a general criterion to suit other types of structures (frames with diagonal members et
cetera).

Numerical examples

Three numerical examples are considered. The first two are extremely simple and aca-
demic with only two members but they show some very basic features about the methods
rather nicely. The third is an example of a more realistic design situation where a tubular
steel truss is connected to columns forming a building frame.
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Figure 3: Two member truss.

Two member truss

Consider a two member truss in Fig. 3. Each member is modeled by using five Euler-
Bernoulli beam elements with element stiffness matrix

k =
E

l


A 0 0 −A 0 0

12I
l2

6I
l

0 −12I
l2

6I
l

4I 0 −6I
l

2I
A 0 0

12I
l2

−6I
l

sym 4I

 (15)

and element geometric stiffness matrix

kg =
1

30l


0 0 0 0 0 0

36 3l 0 −36 3l
4l2 0 −3l −l2

0 0 0
36 −3l

sym 4l2

 (16)

The ratio of measures a/b is set to 1. The buckling length is calculated with ten
values of angle α. The results are seen in Tab. 1. The local approach gives exact value
for buckling length factor with each value. The situation is illustrated for α = 40◦ in Fig.
4 where it can be seen that first three modes represent the buckling of left member and
the fourth represents the mode where the member on the right hand side buckles. The
respective shares of strain energies are shown in Tab. 2.

Clearly, both proposed methods give exact values for buckling length of both members.
The use of lowest eigenmode will result error that grows when α approaches 45◦. When
α = 45◦, there is no compressive force in the member 2 and therefore buckling force or
buckling length factor cannot be calculated.

Two member frame

Consider a two member frame in Fig. 5. Similarly to previous example, five Euler-
Bernoulli elements are used in modeling each member.
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Table 1: Buckling length factors with local approach for the two-member truss.

Local kg Lowest eigenmode
α [◦] k1 [-] k2 [-] k1 [-] k2 [-]

0 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.09
10 1.00 1.00 1.00 1.19
15 1.00 1.00 1.00 1.32
20 1.00 1.00 1.00 1.46
25 1.00 1.00 1.00 1.66
30 1.00 1.00 1.00 1.93
35 1.00 1.00 1.00 2.38
40 1.00 1.00 1.00 3.38
45 1.00 - 1.00 -

Table 2: Relative strain energy of the five lowest modes in the two-member truss example.

Mode
Member 1 2 3 4 5

Left 1.00 1.00 1.00 0.00 1.00
Right 0.00 0.00 0.00 1.00 0.00

The corresponding results as in previous example are shown for this example in Tabs.
3 and 4. In this example, the buckling of members is coupled with small α values. This
implies error for the local approach. With the energy based approach the buckling of
member with higher load is clearly correct but the buckling of the other member gets
very low buckling length values. With α = 25◦, there is not even a mode within the first
ten lowest ones which would give strain energy content of 50 % (see Eq. 14) or more.
However, in Tab. 5 it can be seen that in the third mode the strain energy content of the
member is 49 %. Thus, it seems that the rule specified in Eq. 14 is not applicable in this
example.

Truss frame

Consider a truss frame in Fig. 6. The structure is constructed from cold formed square
hollow sections with member profile dimensions shown in Tab. 6. The chosen profiles are
a result of optimization [7] with fixed values of buckling length proposed by EN 1993-1-1
for the truss members and simply 0.9L for the columns. Cross-sectional properties are
calculated following EN 10219-2 [2]. In the mechanical model, the brace-to-chord and
chord-to-column joints are hinged, chords and columns are continuous and modeled with
beam elements without hinges.

In standard [3], the buckling length factor value for chords is 0.9 and for braces 0.9
(According to Finnish national annex for EN 1993-1-1, value 0.75 can be used). For
braces, the model with ideal hinges gives length factor k = 1.0 and the value suggested
by the standard is lower. This is due to fact that in welded tubular trusses the joints are
not necessarily ideally hinged but semi-rigid.

Therefore, some rotational stiffness for the joints is approximated. Joint fixity factor
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Table 3: Buckling length factors with local approach for the two-member frame.

Local kg Energy Lowest eigenmode
α [◦] k1 [-] k2 [-] k1 [-] k2 [-] k1 [-] k2 [-]

0 0.84 0.84 1.00 0.70 1.00 1.00
5 0.84 0.84 0.96 0.73 0.96 1.05
10 0.84 0.84 0.93 0.76 0.93 1.11
15 0.84 0.84 0.91 0.79 0.91 1.20
20 0.84 0.84 0.89 0.41 0.89 1.31
25 0.84 0.84 0.88 - 0.88 1.46
30 0.84 0.84 0.87 0.41 0.87 1.68
35 0.84 0.84 0.86 0.69 0.86 2.05
40 0.84 0.84 0.85 0.72 0.85 2.90
45 0.84 - 0.84 - 0.84 -

Table 4: Relative strain energy of first five modes in the two-member frame, α = 40◦.

Mode
Member 1 2 3 4 5

Left 0.80 0.89 0.92 0.87 0.40
Right 0.20 0.11 0.08 0.13 0.60

Table 5: Relative strain energy of first five modes in the two-member frame, α = 25◦.

Mode
Member 1 2 3 4 5

Left 0.74 0.66 0.51 0.73 0.55
Right 0.26 0.33 0.49 0.27 0.44

Table 6: Truss-frame profile dimensions.

Member b [mm] t [mm]

Top Chord 150 8
Bottom Chord 150 5

Columns 180 8
Brace (20 & 33) 100 4
Brace (21 & 32) 90 3
Brace (22 & 31) 90 3
Brace (23 & 30) 60 4
Brace (24 & 29) 60 4
Brace (25 & 28) 50 3
Brace (26 & 27) 50 3
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Critical load factor 6
cr

 = 9.9126  (LC 1)

(a) Mode 1.

Critical load factor 6
cr

 =39.7821   (LC=1.)

(b) Mode 2.

Critical load factor 6
cr

 =90.7732   (LC=1.)

(c) Mode 3.

Critical load factor 6
cr

 =108.92   (LC=1.)

(d) Mode 4.

Figure 4: Four lowest buckling modes for the two member truss. Colouring shows the
used finite element division.

α [6] is defined as

α =
1

1 +
3EI

kL

(17)

where k is the rotational stiffness of the joint. Clearly, α = 0 means ideal hinge and α = 1
ideally rigid connection. The standard EN 1993-1-8 [4] specifies upper limit for ideally
hinged joint to be

k ≤ EI

2L
(18)

this means

α =
1

7
≈ 0.143 (19)

In the calculation, fixity factor value α = 0.1 is assumed for brace-to-chord joints.
Every member is modeled again with five elements. The results for relative strain energy
in ten lowest positive modes can be seen in Table 7. In this structure, the member that is
buckling exhibits over 90 % share of the total strain energy. Therefore, it is clear which
member buckles in the first ten modes. This can be verified from Fig. 7 for the eight
lowest modes.

The lowest four modes are connected to buckling of braces and the fifth one is a sway
mode connected to column buckling. Upper chord buckling is seen in mode eight. The
respective buckling length factors are seen in Table 8.

It seems that the local approach can predict the buckling length of braces (members
from 20 to 33) consistently. In the column buckling mode (Fig. 7 mode 5) both columns
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Figure 5: Two member frame.

Figure 6: Truss frame example structure, loads and member numbering.

Table 7: Relative strain energy of members of the truss frame in ten lowest positive modes.

Mode
Member 1 2 3 4 5 6 7 8 9 10

Columns 0.00 0.00 0.00 0.00 0.98 0.01 0.01 0.00 0.00 0.00
Upper chord 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.94 0.03 0.01

Brace (20 & 33) 0.00 0.00 0.00 0.00 0.02 0.98 0.98 0.00 0.00 0.00
Brace (21 & 32) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brace (22 & 31) 0.00 0.00 0.99 0.99 0.00 0.00 0.00 0.01 0.00 0.00
Brace (23 & 30) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brace (24 & 29) 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.05 0.97 0.99
Brace (25 & 28) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Brace (26 & 27) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 8: Buckling length factors of compressed members obtained with the proposed
methods and with the lowest eigenmode.

Member Local approach Energy method Lowest eigenmode

1 0.80 1.38 30.84
2 0.67 1.18 1.97
3 0.70 0.96 1.59
4 0.70 0.91 1.52
5 0.70 0.92 1.52
6 0.70 0.97 1.61
7 0.67 1.22 2.03
16 0.95 24.65 31.38
17 0.77 1.08 1.38
18 0.95 27.62 35.17
19 0.77 1.07 1.36
20 0.80 0.80 1.13
22 0.80 0.80 1.01
24 0.80 0.80 0.83
26 0.80 0.80 3.27
27 0.80 0.80 1.70
29 0.80 0.80 0.80
31 0.80 0.80 0.99
33 0.80 0.80 1.12

buckle simultaneously and the roof sways horizontally. Thus geometrical stiffness matrix
would have to be applied in both columns to capture the mode accurately. By doing this,
eigenvalue 2.691 and buckling length factor 1.07 are obtained. These values are very close
to the sway mode values.

With the energy method, members 16 and 18 have seemingly very high buckling length
factor. However, if the respective buckling forces (Eq. 4) are calculated and the member
resistance evaluated according to EN 1993-1-1, approximately 39 % utilization ratio is
obtained for members 16 and 18 whereas approximately 50 % ratio is found in members
17 and 19. Thus the high buckling length factor for members 16 and 18 does not seem to
have effect on the sizing of the column.

Discussion and conclusions

Both proposed methods are tested in three examples. The first two represent simplified
and extreme structures with only two members. In the first one, the buckling modes
are totally uncoupled. In the second one the coupling is very strong and there are some
parameter values with which the methods fail to give correct buckling length values.

The local approach seems to work well in structures where eigenmodes are not coupled
to other members’ behaviour or coupling is moderate. If a sway buckling mode is expected,
the global geometric stiffness matrix should be used or local matrix should be applied to
all columns. However, to authors’ knowledge, most of the typical structures found in
buildings are braced (no sway modes) and connected with semirigid joints. This means
that the applicability range of the method covers many typical structures. Moreover, the
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method is very straightforward to be implemented.
The approach based on energy measures can be considered very accurate but at this

stage it is not clear how to formulate a criterion for choosing the correct eigenmode
in a way that it would work with all frame structures. With the rather simple criterion
proposed in the text, good results are obtained in the third design example but the second
one reveals that the criterion is not general. Thus more research is needed for a more
general criterion.

The computational effort is an important evaluation aspect of structural analysis meth-
ods in structural optimization where the objective and constraint functions may need to
be evaluated thousands of times in a single optimization run. Of the two proposed meth-
ods, the energy based method seems more efficient since only one set of eigenpairs needs
to be solved whereas in the local approach the eigenvalue solution needs to be repeated
for each compressed member.

In the examples, prismatic members with Euler-Bernoulli beam assumptions are con-
sidered. However, both of the methods can theoretically handle also non-prismatic mem-
bers and also distributed axial loading. Moreover, other types of assumptions of beam
behaviour such as the Timoshenko beam theory and respective finite elements can be
used with these methods.

In this contribution, only planar steel frames were considered. Thus, in further studies,
extension to three dimensional structures including flexural buckling out-of-plane as well
as torsional buckling behaviour should be considered.
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Critical load factor 6
cr

 =1.6538   (LC=1.)

(a) Mode 1.

Critical load factor 6
cr

 =1.7836   (LC=1.)

(b) Mode 2.

Critical load factor 6
cr

 =2.5386   (LC=1.)

(c) Mode 3.

Critical load factor 6
cr

 =2.6411   (LC=1.)

(d) Mode 4.

Critical load factor 6
cr

 =2.6819   (LC=1.)

(e) Mode 5.

Critical load factor 6
cr

 =3.2292   (LC=1.)

(f) Mode 6.

Critical load factor 6
cr

 =3.3212   (LC=1.)

(g) Mode 7.

Critical load factor 6
cr

 =4.5598   (LC=1.)

(h) Mode 8.

Figure 7: First eight buckling modes for truss frame.
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