
Rakenteiden Mekaniikka (Journal of Structural Mechanics)
Vol. 50, No 3, 2017, pp. 349 – 352
https://rakenteidenmekaniikka.journal.fi/index

https://doi.org/10.23998/rm.65307

c©The author(s) 2017.
Open access under CC BY-SA 4.0 license.

A model for magneto-elastic behaviour
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Summary. In this paper, a coupled magnetoelastic model for isotropic ferromagnetic materials
is presented. The constitutive equations are written on the basis of the total energy in which
the right Cauchy-Green strain tensor and the Lagrangian form of the magnetic field strength
are used as the basic state variables. It is also applied to ferromagnetic electric steel for which
the material parameters are calibrated.
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Introduction

In this paper a finite strain model for isotropic magnetostriction is developed. The model
is based on the formulation introduced by Dorfmann and Ogden [3, 4] utilizing the concept
of “total energy function”. Since further development towards anisotropic behaviour is
looked for, the formulation is given by using the Lagrangian description.

Constitutive equations

In magnetoelastostatics the three basic magnetic variables are the magnetic field H , the
magnetic induction B and the magnetization M . The fields H and B are considered as
the primary fields and M only as an auxiliary field [5], which can be defined in terms of
H and B .

In electromagnetics it is customary to work with the Eulerian frame, so the field H and
B are related to the current configuration. Since our future goal is to model anisotropic
behaviour where the material orientation is important, a material description of motion
is chosen. The Lagrangian forms of the primary magnetic fields are

H L ≡ F TH , and BL ≡ JF−1B , (1)

where F is the deformation gradient and J = det F . For further details see [3, 4].
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Denoting the complementary form of the total energy function as Ω∗(F ,H L), and
using the standard Coleman-Noll procedure, the total stress τ and the magnetic induction
B can be obtained from equations

τ = J−1F
∂Ω∗

∂F
, B = −J−1F ∂Ω∗

∂H L

. (2)

The function Ω∗(F ,H L) is a partial Legendre transform of the total energy function
Ω(F ,BL), i.e.

Ω∗(F ,H L) = Ω(F ,BL)−H L·BL. (3)

The total energy function Ω is related to the Helmholtz free energy per unit mass ψ as

Ω ≡ ρ0Φ + 1
2
µ−10 JB · B , where Φ(F ,BL) ≡ ψ(F , J−1FBL) (4)

in which ρ0, µ0 are the density in the reference configuration and the magnetic permeability
in vacuum, respectively.

To model isotropic magnetostriction, the energy is assumed to depend on the right
Cauchy-Green deformation tensor C = F TF and the Lagrangian magnetic field H L.
Integrity basis of a scalar function depending of a symmetric second order tensor and a
vector consist of the following six invariants [6]:

I1 = tr C , I2 = 1
2
[(tr C )2 − tr C 2], I3 = det C , I4 = H L·H L,

I5 = H L·CH L, I6 = H L·C 2H L. (5)

From equations (2) expressions for the total stress tensor τ and the magnetic induction
vector B are found as

τ = J−1F
6∑

k=1

∂Ω∗

∂Ik

∂Ik
∂F

, B = −J−1F
6∑

k=1

∂Ω∗

∂Ik

∂Ik
∂H L

. (6)

Evaluation of the derivatives ∂Ω∗/∂F and ∂Ω∗/∂H L gives

τ =J−1[2bΩ∗1 + 2(I1b − b2)Ω∗2 + 2I3I Ω∗3 + 2bH ⊗ bH Ω∗5

+ 2(bH ⊗ b2H + b2H ⊗ bH )Ω∗6], (7)

B =− J−1(2bH Ω∗4 + 2b2H Ω∗5 + 2b3H Ω∗6), (8)

where b = FF T is the left Cauchy-Green deformation tensor, the notation Ω∗i denotes
the derivative Ω∗i = ∂Ω∗/∂Ii and ⊗ is the standard tensor product.

The chosen total energy functional is additively decomposed to a purely elastic part

Ω∗e =
1

2
K

[
1

2
(J2 − 1)− ln J

]
+

1

2
G(tr C̄ − 3) (9)

and a coupled magneto-elastic part

Ω∗m =− 1
2
µ0(1− α5 − α6)I4 − α4µ0h0 ln

[
cosh(f(x)

√
I4/h0)

]
− 1

2
α5µ0h

2
0(I5/h

2
0)− 1

2
α6µ0h

2
0

{
1 + β1

[
1− exp(−β2I4/h20)

]}
(I6/h

2
0), (10)

where the isochoric part of the right Cauchy-Green deformation tensor is denoted as C̄ =
J−2/3C and K,G are the bulk and shear moduli, respectively. The function f(x), where
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Table 1. Coefficients of the f -function.

kf ks 104 · d s− s+ f−∞ f+
∞ 104 · xm fm

5378.499 4431.884 1.75633 1.6775 0.531416 0.22914 1.00759 1.089 2.4

Figure 1. Measured and model forms of the f -function.

x = Ĩ5 = H L · (C̄ −I ) ·H L/I4 is important in modelling the deformation dependency, i.e.
the stress dependency of the initial magnetic permeability. For electric steel the following
form is adopted based on experimental results

f(x) = f∞(x) + (fm − f∞(x)) exp

{
−
√

[(s(x)x− xm)/d]2
}
, (11)

and the infinity f∞ and slope function s are of the form

f∞(x) =
1

2

{
f−∞ + f+

∞ + (f+
∞ − f−∞) tanh [kf (x− xm)]

}
, (12)

s(x) =
1

2

{
s− + s+ + (s+ − s−) tanh [ks(x− xm)]

}
. (13)

Note that the function f is insensitive to volumetric deformation. The behaviour of the
initial magnetic permeability as a function of applied stress shows a peak and saturation
both in tension and compression, therefore the rather complicated expression (11) contains
nine parameters: fm, xm, d, f

−
∞, f

+
∞, kf , s

+, s− and ks, which are estimated by standard
least-squares fitting. The values obtained for the electric steel of grade Mxxx-50A2 are
shown in Table 1, see also Fig. 1. It should be noticed that the form of the function f is
material dependent.

The model parameters (K,G, h0, α4, α5, α6, β1, and β2) will be estimated from the
experiments. It can be seen that depending on the signs and relative magnitudes of the
coefficients α5 and α6, the following behavior can be obtained in the uniaxial case:

1. α5 < 0, α6 = 0 results in negative magnetostriction with saturation,
2. α5 > 0, α6 = 0 results in positive with H monotonously increasing magnetostriction,

2Unfortunately the loss value of the studied material is not known.

351



3. α5 = 0, α6 > 0, β1 = 0 results in positive with H monotonously increasing magne-
tostriction,

4. α5 > 0, α6 < 0, β1 = 0 results in negative saturating magnetostriction,
5. α5 > 0, α6 < 0, β1 6= 0, but |α6| < 1

2
α5 results in positive saturating magnetostric-

tion,
6. α5 > 0, α6 < 0, β1 6= 0, but |α6| > 1

2
α5 results in initially positive magnetostriction

which however saturates to a negative value.

Concluding remarks

Modelling magnetoelastic behaviour is challenging due to the complexity of the coupled
magnetomechanical problem. A Lagrangian formulation is adopted due to future expand-
ability to an anisotropic case. Future study is still needed to explore the capabilities of
the model.
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