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Numerical modelling of dynamic spalling test on rock with
an emphasis on the influence of pre-existing cracks

Timo Saksala

Summary. This article deals with numerical modeling of rock fracture under dynamic tensile
loading and the related prediction of dynamic tensile strength. A special emphasis is laid on the
influence of pre-existing natural microcrack populations as well as structural (artificial) cracks.
For this end, a previously developed 3D continuum viscodamage-embedded discontinuity model
is employed in the explicit dynamic finite element simulations of the spalling test. This model
is capable of modelling the effect of natural microcracks populations always present in rocks as
well as to capture the strain rate hardening effect of quasi-brittle materials. In the numerical
simulations of spalling test on Bohus granite, it is shown that the model can predict the pull-
pack velocity of the free end of the intact rock sample and the effect of structural cracks with
a good accuracy. According to the simulations, the effect of microcrack populations, modeled
here as pre-embedded discontinuity populations, is weaker than the corresponding effect under
quasi-static loading.
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Introduction

In many rock engineering applications, such as blasting and percussive drilling, loads are
dynamic and transient, i.e. associated with high amplitude and short duration stress
pulse. In these applications, information on the mechanical properties of rock material is
important in assessing the stability of rock structures. One of the key material properties
of quasi-brittle materials, such as rock and concrete, with respect to stability and fracture
analyses is the dynamic tensile strength. There are many experimental methods to mea-
sure the dynamic tensile strength of rock directly and indirectly, see [1] for an extensive
review.

One of the direct tests to measure the dynamic tensile strength of rocks and concrete
is the spalling test using the Split Hopkinson Pressure Bar (SHPB) [2]. In this test, a
compressive stress wave generated by the SHPB device travels through the incident bar
and the cylindrical rock specimen attached to it. The stress wave reflects as a tensile
wave at the free end of the rock specimen and, as the tensile strength is only a fraction
of the compressive strength, break the specimen by transverse splitting mechanism, i.e.
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spalling, into two or more pieces. The dynamic tensile strength of the rock specimen can
be then calculated, e.g. from the measured velocity of the spalls [3].

In the computer analyses of rock structures, the major challenge is related to the
numerical description of rock fracture processes. Many numerical models, based on the
finite element method and the discrete element method, have been developed during
the last decades for the simulation of rock fracture. For a review article on numerical
methods in rock mechanics in general, see [4]. A constitutive model for rock under dynamic
loading conditions is an important asset, not only in the numerical analysis of above
mentioned rock engineering applications but also in the development and analysis of
reliable experimental techniques. The above described spalling test, for example, relies
heavily on the assumption that the incident compressive stress wave does not damage the
rock material. The validity of this assumption can be investigated by numerical modelling,
as done in [5]. Therein, the effect of the rock heterogeneity on the tensile strength was
studied in 2D finite element simulations of dynamic spalling using a damage model (RFPA
code). According to these simulations, the compressive wave damaged the rock material
(its numerical representation to be exact) when numerical heterogeneity was increased
and the compressive wave amplitude was high enough.

Another aspect that can be studied by numerical simulation is the influence of pre-
existing cracks on the dynamic tensile strength. This issue was studied by saadati et
al.[6] experimentally and numerically with a probabilistic damage model based on the
Weibull distribution implemented in FEM. They obtained 3D simulation results for pull-
back velocity and dynamic tensile strength with fairly good agreement with the spalling
experiments on Bohus granite. However, they did not present the simulated failure modes.
Forquin and Erzar [7] applied the same modelling technique in numerical and experimental
study of dynamic fragmentation of concrete. They presented the fracture modes in terms
of damage variable distributions in the finite element mesh. Finally, the experimental and
numerical study on the dynamic failure of sandstone by Das and Shen [8] is mentioned.
They implemented the rate dependent Taylor-Chen-Kuszmaul model in Abaqus finite
element code and simulated the spalling test on Piles Creek sandstone. The failure modes
were presented in terms of damage contours.

All the above mentioned numerical studies fall to category of continuum methods
based on finite elements. This class of numerical methods suffer from poor representation
of discontinuities, e.g. cracks. Therefore, as FEM has indisputable advantages in genuine
continuum problems as well as unsurpassed maturity as a numerical method, possibilities
to extend its applicability to the problems involving discontinuities, such as cracks, by
various enriching techniques have been searched during the last two and half decades. Two
main categories of these methods are the element-based enrichment [9] (Embedded FEM)
or the nodal-based enrichment [10] (Extended FEM). While having quite similar accuracy
properties in crack propagation simulations, the former method is computationally supe-
rior due to the local nature of the enrichment which allows for elimination of the extra
degrees of freedom (related to the displacement discontinuity) by static condensation [11].

In the present paper, the embedded discontinuity FEM is chosen for numerical mod-
elling of failure in the spallation test. For this purpose, the combined viscodamage-
embedded discontinuity model developed by Saksala et al. [12][13] is employed. It will be
shown that not only the experimental pull-back velocity and hence the dynamic tensile
strength but also the failure modes in the spalling test, in contrast to the above mentioned
studies, can be predicted with this model. A special emphasis of the present study is on
the influence of the pre-existing structural cracks and natural microcrack populations al-
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Figure 1. Schematic for the rate-dependent three-phase rock material model.

ways present in rocks. This aspect was also studied by Saadati et al. [6] but, as mentioned
above, they did not present the predicted failure modes. Moreover, the structural cracks
were modelled as zones of elements in the mesh with (almost) zero tensile strength. In
the present work, the structural crack geometry is realistically presented and the inherent
microcracks are represented as pre-embedded discontinuities with negligible strength.

Constitutive description of rock

The theory of the rock material model is presented here. In this model, the rate-dependent
material behavior under dynamic loading is divided into three phases of response illus-
trated schematically in figure 1. When the elasticity limit is reached at the end of first
linear elastic phase, microcracking starts in the second phase and the response remains
isotropic nonlinear hardening until the rate-dependent peak stress is reached. Upon reach-
ing the peak stress, a macrocrack is introduced triggering the third non-linear softening
phase. A distinctive feature of this model is the rate-dependency, which is incorporated
in the pre-peak part of the constitutive description. A physical justification to this choice
is that micro-cracking processes are rate-dependent: it takes time, say incubation time
[14], for a fracture process to develop from micro-scale to macro-scale. Thereby, higher
strain rates lead to higher peak stresses.

In this section, the viscodamage model to describe the pre-peak rate-dependent hard-
ening response of rock is first briefly described. Then, the bi-surface embedded discon-
tinuity model to control the post-peak softening process is sketched. As the model is
already presented in the aforementioned references, only the necessary (for comprehen-
sion) components are given here.

Viscodamage model for rate-dependent pre-peak hardening description

In the classical method to incorporate rate-dependency into a continuum constitutive
model, a constant viscosity term is added to static strength (see [15] for example). If the
pre-peak and post-peak response is governed by a single yield function, this approach leads
to unrealistically wide and messy failure bands [16]. For this reason, Saksala et al. [12]
developed a rate-dependent extension of the three-phase damage-embedded discontinuity
model by Brancherie and Ibrahimbegovic [17]. In this extension, the rate-dependency is
included in the pre-peak nonlinear hardening process (as illustrated in figure 1) described
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by an isotropic viscodamage model. By restricting the rate-dependency in the part of
the model governing the pre-peak response, the post-peak softening process resulting in
a crack can be more accurately captured in dynamic applications [12][13].

The viscodamage model describing the pre-peak hardening phase is formulated anal-
ogously to the viscoplastic consistency approach by Wang et al. [18]. Moreover, the
compliance damage format is employed here. The main ingredients of such a model are

φ̄(σ, κ̄, ¯̇κ) =
√

σ+ : De : σ+︸ ︷︷ ︸
||σ+||De

− 1√
E0

(σt + q̄(κ̄, ¯̇κ)) (1)

D = (1 + µ̄)De, ˙̄µ =
˙̄λ

||σ+||De

, ¯̇κ =
˙̄λ√
E0

(2)

q̄(κ̄, ¯̇κ) = h̄κ̄+ s̄¯̇κ, h̄ = ḡσt exp(−ḡκ̄) (3)

φ̄ ≤ 0, ˙̄λ ≥ 0, ˙̄λφ̄ = 0 (4)

In equation (1), φ̄ is the viscodamage loading function, σ+ is the positive part of the stress
tensor, σ, σt is the elastic limit for tensile stress, E0 is the Young’s modulus of intact rock,
D is the compliance (flexibility) tensor, the initial value of which is obtained as the inverse
of the intact elasticity tensor by De = E−1

0 , κ̄, ˙̄κ are the internal variable and its rate,
respectively, and q̄ is the hardening variable controlling the evolution of peak stress. In

equation (2), variable ¯̇λ is the viscodamage increment, and variable µ̄ ∈ [0,∞) represents
the additional material flexibility due to damage. An exponential hardening law with a
linear viscosity term is spefified for variable q̄ in (3). Therein, h̄, s̄ are the hardening
modulus and constant viscosity moduli, respectively, and ḡ is a parameter controlling
the initial slope of the hardening curve. Finally, Equation (4) states the Kuhn-Tucker
loading-unloading conditions. The stress and other variable updates for this model are
given in [19].

Finite element with a discontinuity plane

Let a body Ω ∈ R3 be discretized with 4-node, linear tetrahedral elements. This element
is well suited for explicit analyses involving transient loads and stress wave propagation
and facilitates the FE implementation of the embedded discontinuity theory considerably
because the displacement jump remains constant (element-wise). Assume now that local-
ization of deformation, through coalescence of the growing micro-cracks, has taken place
so that the body is split into two disjoint parts. Thus, some of the finite elements are also
split into two parts by a displacement discontinuity Γd defined by the normal n and the
tangent vectors m1, m2, as illustrated in figure 2a.

With the linear tetrahedral element, the discontinuity surface becomes a plane inside
the element. Assuming infinitesimal deformation kinematics, the displacement and the
strain fields for this element can be written as

ue = Niu
e
i + (HΓd

− ϕ)αd (5)

εe = (∇Ni ⊗ uei )
sym − (∇ϕ⊗αd)

sym + δΓd
(n⊗αd)

sym (6)

In equation (5), αd denotes the displacement jump, Ni, u
e
i are the standard interpolation

function and nodal displacement vector for node i, respectively. In equation (6), HΓd
, δΓd

are the Heaviside function and Dirac’s delta function at Γd, respectively, while function
ϕ restricts the effect of the displacement jump within the corresponding finite element
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Figure 2. Four-node tetrahedral element with a discontinuity plane (a), and the possible positions (with
the same normal vector n) of a discontinuity that determine the value of function ϕ (b)

so that the essential boundary conditions remain unaffected [20]. It should be noticed
that in arriving at (6), the gradient of the displacement jump, ∇αd, is zero for linear
tetrahedron. Moreover, the term containing the Dirac’s delta function, δΓd

(n ⊗ αd)
sym,

in (6) is valid only when x ∈ Γd. Elsewhere, i.e. when x ∈ Ω±e this term is zero so that it
can be neglected at the global level of solving the discretized equations of motion.

Function ϕ is chosen so as to make its gradient as parallel as possible to the dis-
continuity normal. This choice, which makes the element tangent stiffness matrix well-
conditioned, is obtained by criterion [21]

∇ϕ = arg

(
max
k=1,2,3

|
∑k

i=1∇Ni · n|
||
∑k

i=1∇Ni||

)
(7)

The three possible modes to be examined in this criterion are illustrated in figure 2b.
The finite element formulation of the balance of linear momentum leading a simple

implementation with the linear tetrahedron can obtained by the EAS (Enhanced Assumed
Strains) concept where the enhanced modes are constructed in the strain space, orthogonal
to the stress field [22]. This procedure leads to the following expression for the weak
traction balance equation

1

Ve

∫
Ωe\Γd

σ · ndΩ =
1

Ae

∫
Γd

σΓd
· ndΓd (8)

where Ve is the volume of the element, Ae is the area of the discontinuity surface and
σ,σΓd

are the stress in the element (excluding the discontinuity) and at the discontinuity,
respectively. With the linear tetrahedron, the integrands in (8) are constants inside the
element yielding the strong traction equation

tΓd
= σ · n = Ed : (εtot − (∇ϕ⊗αd)

sym) · n (9)

where Ed = D−1 is the degraded elasticity tensor. The similarity of Equation (9) to the
stress expression in plasticity theory based on the decomposition of strain into the elastic
and plastic parts suggests that the methods of computational plasticity can be exploited
in solving the traction and the displacement jump.

Bi-surface model for solving the displacement jump

A plasticity inspired bi-surface model separating the tensile and shear modes for the solu-
tion of the displacement jump and and the traction update is briefly described here. The
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loading functions, softening laws and the evolution equations of this model are summa-
rized as

φt(tΓd
, κ, κ̇) = n · tΓd

− (σt + q(κ, κ̇)) (10)

φs(tΓd
, κ, κ̇) = β

(
tΓd
· tΓd

− (n · tΓd
)2
)n
− (σs + σs

σt
q(κ, κ̇)) (11)

q(κ, κ̇) = hκ+ sκ̇, h = −gσt exp(−gκ) (12)

α̇d = α̇t + α̇s = λ̇t
∂φt

∂tΓd

+ λ̇s
∂φs

∂tΓd

(13)

ṫΓd
= −Ed : ((∇ϕ⊗ α̇d)

sym) · n (14)

κ̇ = −λ̇t
∂φt

∂q
− λ̇s

∂φs

∂q
(15)

where tΓd
is the traction vector, σs, σt are the elastic stress limits in tension and shear,

respectively, κ, κ̇ are the internal variable and its rate related to the softening law for
discontinuity, and λ̇t, λ̇s are the crack opening (mode I) and sliding (mode II) increments.
The softening slope parameter g is defined with the mode I fracture energy GIc as g =
σt/GIc and constant viscosity modulus s is assumed. Finally, n and β are parameters
that control the shape of the shear loading function. The displacement jump and other
variable updates for this model are given in [19].

Viscosity is introduced into the embedded model for stabilizing purposes only, not
in order to incorporate the strain rate dependency (which is done by the continuum
viscodamage model). Including viscosity allows for very steep slopes of the softening
response, see [12][13].

Transition from pre-peak hardening to post-peak softening

A fixed crack concept is adopted which means that n remains the same after introducing
a discontinuity in an element. A discontinuity is embedded perpendicular to the first
principal direction into an element, when the following criterion is met:

εdeqv ≥ εdlim with (16)

εdeqv =
√
ε+
d : ε+

d (17)

εd = (D−D0) : σ (18)

where ε+
d is the positive part of the damage strain εd and εdlim is a given limit of the

equivalent damage strain εdeqv. In order to secure a continuous response upon transition
from the viscodamage model to the discontinuity model, the hardening variable q and the
parameter controlling the post peak slope, g, are set as q = q̄, g = σtdyn/GIcdyn where
σtdyn is the dynamic tensile strength, and GIcdyn is the dynamic mode I fracture energy.

Thus, the parameters by which the model response is calibrated to match the quasi-
static experiments are εdlim, σt, ḡ and GIc. In dynamic tensile experiments, the terms to
be calibrated are GIcdyn and s̄.

The final component of the model is the isotropic damage model. It is employed in or-
der to alleviate the locking and spreading problems related to the embedded discontinuity
kinematics implemented with the low order finite elements [22]. The method is to intro-
duce the isotropic damaging at the end phase of the post-peak softening process when,
say, 80− 90 percent of the strength is exhausted. Thereby, the damage variable operates
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Figure 3. Spallation test modelling principle.

on the stress, computed after solving for the displacement jump in Equation (9), by the
standard nominal-effictive stress relation (σ = (1−ω)σ̄). However, as the crack spreading
and locking occur primarily in applications with bending effects, this component of the
model is not elaborated here in more detail.

Numerical simulations

Since the model is extensively validated in different applications in references [12][13],
only the spallation test simulations are presented in this section. Moreover, the model
performance is demonstrated therein at the material point level also. Therefore, instead
of pointless repetition of already published results, only new simulations are presented.

Spallation test simulation model

The spallation test, explained in Introduction, based on the SHPB device is modelled by
the principle illustrated in figure 3. The compressive stress wave induced by an impacting
projectile is simulated as an external stress pulse, σi(t) obtained from the experiments.
The incident bar are modeled with two-node standard bar elements, and the rock sample
is meshed with the 4-node tetrahedrons. Finally, the contacts between the bar end and
the rock sample are modeled by imposing kinematic contact constraints between the bar
end node and the rock mesh surface nodes. These constraints are of form ubar,z−un,z = bn
where ubar,z and un,z are the axial degrees of freedom of the bar node and a rock contact
node n, respectively, and bn is the distance between the bar end and rock boundary node.
The contact constraints are imposed with the forward increment Lagrange multiplier
method (see [15] for details).

The FE method discretized equations of motion are solved explicitly in time. The
modified Euler method is chosen for this end. Accordingly, the response (velocity and
displacement) of the system is predicted as follows

üt = M−1(f text − f tint) (19)

u̇t+∆t = u̇t + ∆tüt (20)

ut+∆t = ut + ∆tu̇t+∆t (21)

where M is the lumped mass matrix, and u, u̇, ü are the displacement, velocity and
acceleration vector respectively.

Material properties and model parameters

The material properties and model parameters used in the simulations are given in table
1. The material properties are valid for Bohus granite which was the rock tested in [6].
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Figure 4. Finite element mesh consisting of 49479 tetrahedrons.

The values of the model parameters not related to Bohus granite were found by single

Table 1. Material properties and model parameters for simulations.

Quantity Symbol Value Unit

Young’s modulus E 50 GPa
Elastic limit in tension σt 5 MPa
Elastic limit in shear σs 10 MPa
Poisson’s ratio ν 0.15
Material density ρ 2660 kg/m3

Mode I fracture energy GIc 100 N/m
Viscosity for continuum s̄ 0.005 MPa · s/m
Viscosity for softening s 0.001 MPa · s/m
Damage strain limit εdlim 5.5E-5
Hardening slope parameter ḡ 50 1/m
Shear function parameter n 0.5
Shear function parameter β 1

element simulations. The quasi-static tensile strength of 8 MPa is matched with these
values.

Spallation test simulations: intact rock samples

The spalling experiments on intact samples of Bohus granite reported in [6] are simulated
here. The cylindrical rock specimen has dimensions D = 45.7 mm and L = 140 mm. The
incident bar and projectile were made of aluminum and had the same diameter as the
rock sample. The projectile length was L = 50 mm and a typical impact velocity was
7.3 m/s that is used here in the simulations. The finite element mesh is shown in figure 4

The simulation results along with the experimental results are shown in figure 5. The
simulated rear face (free end) velocity profile agree quite well with the experimental one,
as can be observed in figure 5b. The dynamic tensile strength of the rock can be calculated
based on the pullback velocity, ∆vpb, as [3]

σtdyn =
1

2
ρC0∆vpb (22)

where ρ is the material density, C0 is the bar velocity. With ρ = 2660 kg/m3 and C0 =
4050 m/s this formula gives σtdyn = 18.9 MPa in the experimental case (∆vpb = 3.5 m/s)
and σtdyn = 22.1 MPa in the simulated case (∆vpb = 4.1 m/s).
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Figure 5. Simulation results (intact rock sample): The failure mode in terms of the magnitude of
displacement jump at the end of simulation with deformed mesh (magnification 100-fold) (a), the rear
face (free end) velocity profile (experimental results after [6]) (b), and experimental failure mode for high
strength concrete (modified from [7]) (c).

As for the failure mode, the experimental results for this particular case were, unfor-
tunately, not available. However, the studies by Forquin and Erzar [7] and Das and Shen
[8] provide suitable cases for comparison. In the former study, the authors carried out
spalling tests on high strength concrete with samples of the same size as here. As the rear
face velocity in a typical test was about 12 m/s, the reported double-spall failure mode
compares reasonably well with the present failure mode, as can be observed in figure 5a
and c. There are two main spalls in the experimental failure mode while the predicted one
has an extra crack located at about 40 mm from the free end. This might be the cause for
the deviation between the predicted and the experimental rear face velocity profiles. The
latter study reports experimental results for Piles Creek sandstone at the impact veloc-
ity of 11 m/s. The experimental failure mode displayed the same double-spall formation
with the first crack located at 76 mm from the free end and a dynamic tensile strength of
22 MPa.

Spallation test simulations: influence of cracks

The influence of two types of cracks is studied numerically in this section. First, the effect
of inherent microcrack populations, modelled as spatially randomly located, oriented pre-
embedded discontinuities with negligible strength, is tested. Then, the effect of structural
macrocracks similar to those studied in [6] is investigated. The structural cracks are
illustrated in figure 6. In case of inherent microcrack populations, two simulations with
microcrack density of 20 % and 40 % are carried out. The orientation of all of the pre-
embedded discontinuities is such that their normals are set parallel to the loading axis.
The simulation results with the inherent microcrack populations are shown in figure 7.
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Figure 6. Geometry and location of structural cracks

Figure 7. Simulation results (with microcracks): The failure mode in terms of the magnitude of displace-
ment jump at the end of simulation with deformed mesh (magnification 10-fold) when 20 % (a), 40 % (b)
of the elements have a pre-embedded crack, and the rear face (free end) velocity profiles (experimental
results after [6]) (c).

The microcrack populations influence the details the failure modes as well as the rear
face velocity profiles, as attested in figure 7. Calculating the dynamic tensile strength
with the Novikov theory (22) gives σtdyn = 18.8 MPa (∆vpb = 3.5 m/s) in case of 20 %
of elements having a microcrack and σtdyn = 15.8 MPa (∆vpb = 2.9 m/s) when 40 % of
elements have a microcrack. These strengths are 85 % and 71 % of the dynamic strength
predicted for the intact specimen. It is of interest to compare these results to quasi-static
tensile test simulations reported in [13]. Therein, the effect of microcrack populations was
studied with exactly the same approach as here and the influence in terms of the drop
in tensile strength was found to be almost linearly dependent on the microcrack density
(the percentage of elements having an embedded discontinuity). Therefore, it can be
concluded that the effect of microcracks is considerably less pronounced under dynamic
than quasi-static loading conditions. This numerical finding is in line with the theoretical
considerations by Denoual and Hild [23]. Therein, the authors found by numerical Monte
Carlo simulations using a probabilistic damage model based on Weibull distribution that
brittle materials become more deterministic as the loading rate increases. As there is a
transition from single-to-multiple fracture modes upon increasing loading rate, this result
means that under dynamic loading conditions the inherent flaws in the brittle materials
do not affect the fracture processes as strongly as under quasi-static loading.

Finally, the simulations with the structural cracks illustrated in figure 6 are carried
out. It should be noted that the location of the cracks was not exactly specified in [6].
Therefore, deviations between the simulation results and the experiments are expected.
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Figure 8. Simulation results (with structural cracks): The failure mode in terms of the magnitude of
displacement jump at the end of simulation (only elements where the magnitude of ||αd|| ≥ 0.01 mm are
plotted) (a), and the rear face (free end) velocity profiles (experimental results after [6]) (b).

This is indeed the case, as can be observed in figure 8. The predicted rear face velocity
shows a clear pullback velocity and some fluctuations thereafter while the experimental
one has a more smooth behavior. However, the maximum velocity and the general trend
are, excluding the oscillation in the predicted curve, still in quite a good agreement with
the experiment. The dynamic tensile strength calculated with the equation (22) gives
σtdyn = 18.3 MPa (∆vpb = 3.4 m/s) which is 83 % of the predicted intact value above.
Thus, again, the effect of (structural) cracks is quite small. It should be noted that the
area ratio of the load bearing cross section at the structural crack to that of the sample is
Acrack/Aintact = 0.54. Hence, neglecting the notch effect, the estimated strength reduction
based on the load bearing area is 54 %. The predicted failure mode displays two clear
macro-cracks located at the second and the fourth structural cracks (referencing to the
free end). Unfortunately, the experimental failure mode was not available.

Conclusions

A previously developed continuum viscodamage-embedded discontinuity model for rock
was employed in the simulations of spalling test for determining the dynamic tensile
strength of brittle materials. A special emphasis was laid on the effect of microcrack
populations and structural cracks on the dynamic tensile strength of the Bohus granite.
The simulations for the intact samples were in a good agreement with the experiments and
the present modelling approach based on embedded discontinuity finite elements better
captures the failure mode than the genuine continuum models.

With the present modelling technique, the effect of microcrack populations always
present in rocks can be easily modelled as pre-embedded oriented discontinuities. In the
simulations, the effect of microcrack populations on the dynamic tensile strength was
milder than expected based on the earlier quasi-static simulations. This feature is in
agreement with the theoretical considerations that brittle materials become deterministic
upon increasing loading rate. This phenomenon is an experimentally observed fact as well.
The effect of the studied structural cracks was similar. Therefore, the present modelling
technique has predictive capabilities in the numerical modelling of rate-sensitive quasi-
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brittle materials.
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