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Combination of permanent and variable loads 

Tuomo Poutanen1, Sampsa Pursiainen, Jari Mäkinen and Tim Länsivaara 

Summary. This paper concentrates on the combination of permanent and variable loads in the 
structural probability theory and its implementation in codes. In the current codes, the permanent 
and variable loads are sometimes combined uncorrelated, and sometimes they are combined 
correlated. We propose that, for the safe outcome in the standardized load estimation, the actual 
permanent and variable loads should be combined correlated without any load reduction. The load 
reduction arising from the uncorrelated combination leads to an unsafe design. For example, when 
the permanent and variable loads are both equal to 1, the combination load is 2 if the correlated 
combination is applied. However, the value predicted by the model for uncorrelated load 
combination is less and for example only ca 1.86 in one uncorrelated load combination option of 
the Eurocodes. Although the load formation processes of the load pairs are uncorrelated, the 
correlated combination is applied since the load formation and the load combination are different 
processes. To support our view, we present arguments and examples based on probability theory, 
physics and statics and relate them with the current codes. 
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Introduction 

This paper concerns the structural probability theory and, in particular, the load 

combination of permanent and variable loads, which is a basic, routinely-performed 

procedure in structural design. We focus on the standardized load combination and use 

the Eurocodes as an example where the correlated load combination, namely rule (6.10) 

and the uncorrelated combination, rules (6.10 a-b), (6.10 a-modified-b) are presented. The 

latter two are based on the hypothesis that both the permanent and variable loads are 

uncorrelated and random and, therefore, they are combined uncorrelated. Since the load 

formation and the load combination are different processes, uncorrelated loads, however, 

do not automatically result in an uncorrelated combination. To distinguish between these 

two fundamental approaches to load combination, we introduce the following terms:  

 Uncorrelated load combination: Two loads are combined assuming that they are 

uncorrelated and random. When the Monte Carlo simulation is used, the combined 

load distribution is computed by giving each distribution its own seed number. In this 

combination, one or both of the loads are multiplied with a reduction factor before 
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calculating their sum, which decreases the estimated value for the total load. We may 

call this combination the ‘reduced’ or ‘vanishing’ combination, as in this combination 

a reduction factor is applied in one way or another, which results in a load reduction. 

This combination may also be called a ‘non-simultaneous combination’, as the design 

load values are non-simultaneous and either one or both loads are multiplied with a 

reduction factor before adding the loads together. The authors have called this 

combination independent combination in the earlier papers [5, 6] 

 Correlated load combination: In this approach, the two design load values are added 

together assuming that they occur simultaneously, the Monte Carlo simulation is 

conducted using one seed number, i.e., the same seed number for both loads. This 

combination can be characterized as a full combination, as there is no reduction or 

vanishing. The authors have called this combination dependent combination in the 

earlier papers [5, 6] 

In this paper we propose that, for the appropriate results in the standardized load 

combination estimation, the permanent load and the main variable load should be 

combined correlated. In support of this proposal we present and justify the following three 

arguments. (1) The loads should be added together without utilising the reduction factor 

that is included in the uncorrelated combination. (2) The uncorrelated load combination 

results in load vanishing and a higher failure probability than intended; the failure 

probability is higher in the combination load than in the single load. (3) This observation 

might help to resolve some contradictions related to load combination in the present code 

standards. 

This article is structured as follows. Firstly, we briefly review the theoretical 

background for load combination and the reasoning behind the present concepts of 

uncorrelated and correlated load combination. Secondly, we explain the arguments 

(1) - (3) in separate sections based on the viewpoints of probability theory and physics. 

Finally, the outcome is discussed and reflected on according to the current code standards 

and we present our conclusions. 

The load combination formulas 

We begin with a brief review of how the permanent load G, G(x;G, G) and the variable 

load Q, Q(x;Q, Q) are combined. This can be done uncorrelated, semi-correlated or 

correlated, although the semi-correlated combination is omitted here as it is not applied 

in the current codes. The two other options are explained in detail below. It is important 

to emphasize that both the correlated and the uncorrelated approach are applied in the 

present codes. 

 

The uncorrelated load combination 

The uncorrelated combination distribution GQ(x) can be obtained by using dedicated 

algorithms [2, 3, 7], the Monte Carlo simulation with two seed numbers, or by using the 

convolution equation [4, 5, 6] given by the integral 

 𝐺𝑄𝑖(𝑥) = ∫ 𝐺𝑑(𝑥 − 𝑟; 
𝐺

, 𝐺)𝑄𝑐 (𝑟; 
𝑄

, 𝑄) 𝑑𝑟
∞

−∞
, (1) 
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where 𝐺𝑄𝑖 is the cumulative distribution of the combination load, 𝐺𝑑 is the density 

distribution of G, and 𝑄𝑐 is the cumulative distribution of Q. Formula (1) can be written 

in many alternative ways with the same result. If the partial distributions are normal, the 

uncorrelated combination distribution GQi (x;GQ, GQ) is also normal and the following 

simple formula can be applied [4, 6]: 

 𝐺𝑄𝑖(𝑥; 
𝐺

+ 
𝑄

 , √𝐺
2 + 𝑄

2 ). (2) 

In the code standards, for the sake of simplicity, the uncorrelated combination is obtained 

through the sum of the component loads multiplied with a reduction factor. Normally, 

two permanent load factors are used. 

The uncorrelated load combination is illustrated in Figure 1. Due to the boundary 

condition, formulas (5) and (6) are omitted here, so the total combined load is 

approximately 10 % less than the sum of the actual loads, i.e., a part of the load vanishes. 

 

 

 

 

 
 

Figure 1. Illustration of the uncorrelated load combination. In this model the load formation and 

the load combination is one process. The combination distribution GQi is constructed from the 

partial distributions G and Q using a stochastic process. The physical boundary, formulas (5) and 

(6), is omitted so about 10% of the load vanishes. 

The correlated load combination 

Loads can be combined correlated, either by using the Monte Carlo simulation and one 

seed number or by adding up the partial distributions by fractiles [4, 6] 

 𝑥𝐺𝑄,𝑖 = 𝑥𝐺,𝑖 + 𝑥𝑄,𝑖 , (3) 

where 𝑥𝐺,𝑖 and 𝑥𝑄,𝑖 are the partial loads in fractile i, and 𝑥𝐺𝑄,𝑖  is the combination load in 

the same fractile. If the partial distributions are normal, the correlated combination 

distribution is also normal, 𝐺𝑄𝑑(x;GQ, GQ) and one can apply the following simple 

formula, which can also be confirmed via a Monte Carlo simulation, [4, 6]: 

 𝐺𝑄𝑑(𝑥; 
𝐺

+ 
𝑄

 , 𝐺 + 𝑄
 ). (4) 

The correlated load combination is illustrated in Figure 2. Each load pair, 𝑔, q, is random 

in the formation process, but since they are assumed to occur simultaneously, these 

random loads must be combined correlated in order to satisfy the formulae (5) and (6).  

  

G, g GQi 
≈0.9(g +q) 

Q, q 
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Figure 2. Illustration of the correlated load combination. The load formation and the load 

combination are different processes. The random loads 𝑔 and q are here uncorrelated, but in the 

combination they are simultaneous and correlated.  

Reasons for using the correlated load combination 

This section explains the following arguments, which support using the correlated load 

combination approach in the standardized procedures. We propose: that the loads must 

be added up without a reduction factor; that the uncorrelated load combination results in 

load vanishing; that this observation helps to resolve some contradictions in standardized 

load combination and, further; that the uncorrelated combination means correlation of the 

loads. We base our arguments on the laws of physics and statics, and also on an example 

comparison of the correlated and uncorrelated load combination. 

 

The physical boundary 

In any load combination there is a boundary. This comes from the governing laws of 

physics and statics, and applies to all load combinations regardless of the load correlation. 

The basic load combination equation in the structural design is 

 𝑔 + 𝑞 =  𝑔𝑞, (5) 

where 𝑔 is the characteristic value of the permanent load obtained from the load table of 

the actual material. This is normally the 50 % fractile of the distribution. The value of 𝑞 

is the characteristic value of the variable load, obtained from the load table for the actual 

load. It is normally the “50-year return load”, i.e., the 98 % fractile of the one-year 

distribution. The term on the right-hand side of the equation, 𝑔𝑞, is the combined load 

with a suitable combination of different loads. The expression (5) is valid in all the design 

codes used in serviceability design, and also in the working stress codes of the failure 

design. Many new codes, e.g. the Eurocodes, are partial safety-factor codes, where the 

characteristic values are multiplied by safety factors in the failure design. With the safety 

factors 𝛾𝑔 and 𝛾𝑞 for the permanent and variable loads, respectively, formula (5) becomes  

 𝛾𝑔𝑔 + 𝛾𝑞𝑞 =  𝑔𝑞. (6) 

In statics, the loads are combined according to Equations (5) and (6). The actions in the 

actual structure caused by the permanent load, 𝑔 or 𝛾𝑔𝑔  and the variable load, 𝑞 or 𝛾𝑞𝑞, 

are uncorrelated and are added together using the rules of statics, regardless of the 

correlation of the loads.  

In the uncorrelated load combination, Equations (5) and (6) are, however, not exact, 

as a part of the load “vanishes” in the combination. This ‘load vanishing’ is imaginary, 

but it has certain consequences as are shown below. This is demonstrated in the 

G, g 
GQd 
g +q 

Q, q 
q 

g 
structure 
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uncorrelated load combination used in the Finnish code [1], i.e., the uncorrelated 

Eurocode combination rules (6.10a, modified-b) of the form  

 𝑚𝑎𝑥(1.35𝑔,1.15𝑔 + 1.5𝑞) = 𝑔𝑞𝑖. (7) 

In the Eurocodes, the load combination has been formulated in a rather complicated way, 

but it has been explained in a simple form in [8], where this combination is given in 

Expression (iii) on page 14. It should be noted that the Eurocodes do not employ the 

concept of correlated and uncorrelated load combinations as they are applied in this 

article. The partial factor of the permanent load value, 1.15, is due to the reduction factor 

ξ for permanent loads in the expression (6.10b) [1].  

In the Eurocodes [1], the correlated load combination, rule (6.10), or Expression (i) 

on page 14 of [8] is given by  

 1.35𝑔 + 1.5𝑞 = 𝑔𝑞𝑑 . (8) 

The designer can choose to use either rule (7) or (8) for the load combination. We can 

conclude that the correlated combination approach (8) is formally correct. When the 

permanent load acts exclusively, the failure load is 1.35𝑔, and correspondingly, when 

the variable load acts exclusively, the failure load is 1.5𝑞. When these loads act together, 

statics determine that the combination load is the sum of these loads according to formula 

(8). It is not possible for the increased variable load to influence the behaviour of the 

permanent load without losing the modelling precision. For instance, it is not realistic to 

assume that the increased snow load on a roof girder decreases either the permanent load 

of the girder or its uncertainty, which would be the consequence if formula (7) were used. 

Further support for the correlated load combination is provided by the following 

example. Table 1 includes the correlated 𝑔𝑞𝑑 and the uncorrelated 𝑔𝑞𝑖 load combinations 

in the failure design according to formulae (7) and (8), when 𝑔 = 1 and 𝑞 = 0, 0.1, 0.5 and 

1 respectively. We find that in the second combination, 𝑔 = 1, 𝑞 = 0.1, the uncorrelated 

combination load is 𝑔𝑞i = 1.35. This is the same as in the first combination, with 𝑔 = 1 

and 𝑞 = 0. Although the load increases, the combination load does not increase, which 

means that the probability of a failure remains the same. Thus, we can consider this as an 

inexact rule for load combination. In this case, the vanished load in comparison to the 

correlated combination is 10 %. An analogous vanishing occurs in the load combination 

(6.10a-b) of the Eurocodes. This vanishing is even greater when the rule (6.10a, modified-

b) is used, as it often is due to its lower computational cost. However, the rule (6.10), i.e. 

formula (8), is much simpler in terms of calculation than either of the uncorrelated 

combinations. 

If two permanent load factors are applied to combine the permanent and variable 

loads, following the combination rules (6.10a-b) and (6.10a, modified-b) of the 

Eurocodes, these factors include a reduction factor which results in load vanishing, i.e., 

an inexact combination. 

The fixed and deterministic values of 𝑔 and 𝑞 obtained from the load tables and 

Equations (7) and (8) correspond to the load combination in the actual design. However, 

we have found that the uncorrelated combination rule (7) yields a contradiction in that, 

although there is an increase in the loading, the probability for failure remains the same. 
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Table 1. Uncorrelated load combinations of the Finnish Eurocodes [1], the rule  

(6.10a, modified-b) and correlated combinations, the rule (6.10). 𝑔 = characteristic permanent 

load, 𝑞 = characteristic variable load, 𝑔𝑞 = characteristic total load, 𝑔𝑞d = design load for 

correlated combination, 𝑔𝑞i = design load for uncorrelated combination.  

 

Number 𝑔 𝑞 𝑔𝑞 𝑔𝑞d 𝑔𝑞i 𝑔𝑞d - 𝑔𝑞i  Error % 

1 1 0 1 1.35 1.35 0.00 0 

2 1 0.1 1.1 1.50 1.35 0.15 10 

3 1 0.5 1.5 2.10 1.90 0.20 10 

4 1 1 2 2.85 2.65 0.20 7 

 

Column example 

Below, we give an example of the load combination for two short columns. The terms 

and symbols of the Eurocodes [1] are used. The design point, i.e. the characteristic value 

of the distributions, is set at unity. The design service life is assumed to be 50 years. The 

target reliability is 50 = 3.5, i.e., the failure probability is Pf50 = 1/4300, and the 

permanent and the 50-year variable load distributions are set to be normal with equal 

parameters: G(x; G, G), VG = 0.1, G = 1, G = 0.1 and Q(x; Q, Q), VQ = 0.1, Q = 1, 

Q = 0.1.  

 

 

 

 

 

 

 

 
Figure 3. Illustration of the load combination. The loads 𝑔, q are random in the formation but 

deterministic and correlated with each other in the combination.  

The columns studied are illustrated in Figure 3. The one on the left is loaded with the 

permanent load, G, and the one next to it with the variable load, Q. The loads are assumed 

to be equal, 𝑔 = q = 1.35, and the material is set to be ideal, i.e., VM = 0, M = 1.35, 

M = 0. Both columns fail at this load with 50 = 3.5.  

The first (physical) column supports a permanent load of 1.35, failing at 50 = 3.5, 

while the other column, which is physically equal to the first one, is added to the structure 

next to the first column, meaning that a variable load 1.35, e.g. a snow load, is added. Due 

to symmetry and statics, the columns are equally loaded with 1.35 and 50 = 3.5. Thus, 

the total combination load, is 2.7 and 50 = 3.5. 

Using the correlated load combination approach, the total load, i.e., the combination 

load is 2.7 (1.35 + 1.35 = 2.7) and its reliability is the same for each column, i.e. 50 = 3.5, 

as the columns fail at the same time.  

  

q = 1.35 g = 1.35 

A = 1 A = 2 

g + q = 
2.7 correlated! 

≈2.5 uncorrelated? 
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Figure 4. Distributions G and Q, thin solid line, G + Q combined correlated GQd (thick solid line), 

G + Q combined uncorrelated GQi (dashed line). The target reliability is 50 = 3.5, meaning that 

the survival probability is S50 = 0.9997674 (horizontal dash-dotted line).  

When the columns are combined (Figure 4 right), basic physics and statics 

unambiguously determine that the behaviour is equal for the two columns, i.e. the 

combined columns fail at the load 2.7, 50 = 3.5. 

However, if the loads are combined uncorrelated, the target reliability is reached at 

load 2.5 (2.495), which is ca 10 % less than the actual strength. This is due to the load 

vanishing which occurs in the uncorrelated load combination. Consequently, the failure 

probability is 1/630 of the correct one and corresponds to 50 = 4.95. A graphic 

comparison between the correlated and uncorrelated combination approach has been 

included in Figure 4.  

It is worthy of note that this example applies to all load proportions , with permanent 

and variable loads of 1.35 and 1.35 (1 -  respectively. The rules of statics demand 

that the combination load is 2.7, i.e., the loads must be combined correlated in all load 

ratios.  

 

Statics 

The laws of statics demand that the combination load 𝑔𝑞 of the actual permanent load 𝑔 

and the variable load 𝑞 is 𝑔 +  𝑞 , which corresponds to the correlated combination. In 

the uncorrelated combination approach, it holds that 𝑔 +  𝑞 < 𝑔𝑞 if the loads are high, 

i.e., a part of the load vanishes, and 𝑔 +  𝑞 > 𝑔𝑞 if the loads are low, i.e., an excess load 

appears. Consequently, the statics viewpoint also suggests that the loads need to be 

combined correlated as the uncorrelated combination approach is in conflict with basic 

statics.  

 

An uncorrelated combination means correlated loads 

When the permanent load 𝑔 is combined uncorrelated with the variable load q to obtain 

the combination load 𝑔q, the proportion of 𝑔 in 𝑔q depends on both 𝑔 and q. Thus, in this 

combination 𝑔 and q are correlated. For example, assume the permanent roof load 𝑔 

produces action a (𝑔). In the uncorrelated load combination, when the snow load is added, 

a (𝑔) decreases (or sometimes increases), i.e., in this combination the loads are correlated 

because in the uncorrelated combination the partial loads become correlated in the 
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combination process. Thus, the uncorrelated (non-simultaneous) combination cannot be 

used to combine uncorrelated loads.  

 

Further arguments 

With regard to the concepts of correlated and uncorrelated load combination, the current 

structural codes include several load combination contradictions, such as: 

 The permanent and variable loads are normally combined uncorrelated for failure 

design (however, in some codes correlated), but in all codes, the loads are always 

combined correlated for serviceability design (e.g. deflection design). It is obvious that 

the load combination is equally correlated or uncorrelated in the failure and the 

serviceability design. 

 The permanent loads of the floors in a multistorey house and parts of a structural 

component are always combined correlated, but the corresponding live loads are 

combined uncorrelated in the case of two live loads, but correlated in the case of 

several live loads. However, all these loads are uncorrelated, i.e. random and 

uncorrelated with each other. Thus, in the existing codes, the uncorrelated, random and 

uncorrelated loads do not consistently generate an uncorrelated combination.  

Finally, we emphasize that the correlated combination approach, if used consistently, 

provides a solution to these contradictions.  

Discussion 

Uncorrelated load combination is likely to result in a lower reliability than is intended. In 

the Eurocodes, the theoretical insecure safety factor error is up to 14 %, which applies to 

the load case when the variable load is 20-30 % of the total load, i.e., the load proportion 

 is 20-30 %. In this case, the 50-year failure probability Pf50 is ca 40 times higher than 

intended, i.e., it is about 1/400 (f50 =2.8). However, it should be 1/15000 (f50 =3.8).  

The example above shows that the actual error is lower, and the safety factor error is 

ca 10 % lower in codes where the loads are combined uncorrelated. However, in some 

cases the actual error is higher: the material safety factors sometimes correspond to the 

correlated load combination and sometimes to the uncorrelated one. For example, this 

error occurs in the Finnish steel Eurocodes where the material safety factor is 1. It is 

somewhat correct if the loads are combined correlated and the material safety factor is 

calculated uncorrelated. However, in the Finnish codes the loads are combined 

uncorrelated, i.e., the overall error is doubled to ca 20 %. 

In the earlier codes, permanent and variable loads are combined correlated. However, 

in many of the codes published over recent decades, the uncorrelated load combination 

and the load reduction is adopted, e.g., in the Eurocodes, the combination rules (6.10a-b) 

and (6.10a, modified-b) are uncorrelated. The Eurocodes also include the correlated load 

combination rule (6.10), which is correct and should be used exclusively.  

There is one important but ambiguous outcome: all design codes are based on safety 

factors defined by national code writers using undisclosed rules. No consensus procedure 

for setting the safety factor exists. For example, the Eurocodes lack clear instructions for 

safety factors. The current safety factors are apparently based sometimes on the 
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uncorrelated load combination and sometimes on the correlated one. Therefore, the safety 

factors may include much the same error as does the load combination. 

Conclusion  

We propose that, for the safest possible outcome, the permanent load and the variable 

load should be combined without a reduction factor, i.e., correlated. In this respect, the 

combination rule (6.10) of the Eurocodes is correlated and correct, whereas the rules 

(6.10a-b) and (6.10a, modified-b), which use reduction factors, are uncorrelated and, 

therefore, also normally about 10 % less safe and sometimes about 20 % less safe. 

The correlated combination approach, if used consistently, removes the load 

combination contradictions of the permanent and variable loads in the current codes.  
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