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Evaluation of some harmonic load models for the vibration
analysis of footbridges

Antti H. Niemi1, Jani Koskela and Filip Fedorik

Summary. We analyze and compare different dynamic load models used for the verification of
vibration serviceability of footbridges. The considered models predict the acceleration response
of the bridge for random streams of pedestrians as well as for deterministic group of walking
or running pedestrians. The analysis is carried out in the context of a steel-concrete composite
bridge model. Both moving and stationary loads are studied.
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Introduction

The current architectural, structural and economical trends for pedestrian bridges lead
towards light and slender structures, where dynamic behaviour plays a big role in terms of
stability and comfort of users. The European design standard [1] requires that appropriate
dynamic models and comfort criteria should be defined but leaves a more detailed spec-
ification to the designer and/or national annexes. Consequently, different guidelines and
load models have been developed and analyzed, see e.g. [2, 3]. We analyze and compare
here three such load models in context of a bridge model.

Mathematical model

The starting point of our study is a conventional structural model for a single-span foot-
bridge based on the Euler-Bernoulli beam theory. The governing differential equation can
be written in terms of the beam deflection w as

EI
∂4w

∂x4
(x, t) + c

∂w

∂t
(x, t) + ρA

∂2w

∂t2
(x, t) = f(x, t), 0 < x < L, t > 0, (1)

where E is Young’s modulus of the material and I and A are the moment of inertia and
area of the beam cross section, respectively. The parameter c is the viscous damping
parameter and ρ stands for the mass density of the material. All parameters are assumed
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to be constant over the interval (0, L), where L is the length of the bridge. The external
load is represented by the function f(x, t). It should be noted that the rotary inertia and
transverse shear stiffness are ignored in this model.

The equation of motion can be decoupled in space and time by using the separation
of variables

w(x, t) = z(t)φ(x).

By utilizing the principle of virtual displacements or the method of weighted residuals,
the equation of motion (1) can be transformed to the form

k̃z(t) + c̃z′(t) + m̃z′′(t) = f̃(t). (2)

For simply supported or hinged ends, the first bending mode is φ(x) = sin(πx/L) and the
corresponding generalized stiffness, mass and damping coefficients are

k̃ =

∫ L

0

EI[φ′′(x)]2 dx = EI
π4

2L3
,

c̃ =

∫ L

0

c[φ(x)]2 dx =
cL

2
,

m̃ =

∫ L

0

ρA[φ(x)]2 dx =
M

2
,

where M = ρAL is the total mass of the bridge. Finally, the generalized load is defined
as

f̃(t) =

∫ L

0

f(x, t)φ(x) dx. (3)

Division of Eq. (2) by the modal mass m̃ yields the customary form of a damped
harmonic oscillator

z′′(t) + 2ζωz′(t) + ω2z(t) =
f̃(t)

m̃
, (4)

where

ω =

√
k̃

m̃
= π2

√
EI

ML3

is the natural frequency of the bridge and

ζ =
c̃

2
√
m̃k̃

is the dimensionless damping ratio.

Load models

As an illustration, we consider three different types of harmonic loads of the form

fi(x, t) = pi(x, t) sin(ωt), i = 1, 2, 3.

The first model is associated to the so called pedestrian stream model, where the ran-
dom load due to a stream of random pedestrians is replaced by an equivalent uniformly
distributed load p1 over the bridge surface area. The second load consists of a group of

128



walkers/joggers with a weight P2 moving with a constant velocity v across the bridge.
Finally, in the third case the load P3 is assumed to act at the center of the bridge at
x = L/2, where the maximum amplitude of the first bending mode occurs. This kind of
models have been advocated in [2] and in the references therein.

Referring to the assumed structural model, the load functions for the above load cases
are

f1(x, t) = p1 sin(ωt),

f2(x, t) = P2δ(x− vt) sin(ωt),

f3(x, t) = P3δ(x− L/2) sin(ωt),

where δ(·) stands for the Dirac delta function. The corresponding generalized loads ac-
cording to Eq. (3) are then

f̃1(t) =
2

π
L · p1 sin(ωt),

f̃2(t) = P2 sin

(
πt

T

)
sin(ωt),

f̃3(t) = P3 sin(ωt),

where T = L/v is the time it takes for the group to cross the bridge in the second load
case.

Numerical results and conclusions

We consider now a steel-concrete composite single-span bridge model which has been
verified in the ultimate limit state. The bridge properties are as follows:

• Length and width: L = 33 m & H = 3 m

• Total mass: M = 105 417 kg

• Bending rigidity: EI = 7 253 400 kN ·m2

• Natural frequency: f =
ω

2π
= 2.174 Hz

• Assumed damping ratio: ζ = 0.3%

In the first loading case, we assume a pedestrian density of d = 0.2 m−2. According to
the pedestrian stream model, see [2], the corresponding equivalent number of pedestrians
uniformly distributed on the loaded surface is

n′ = 10.8

√
ζdLH

LH
= 0.02659 m−2.

In this model, the vertical load is assumed as Pw = 280 N and the reduction factor
corresponding to the natural frequency is calculated as ψ1 = 0.632 based on Table 4-8 of
[2]. The distributed load over the beam length becomes p1 = Pw ·ψ1 ·n′ ·H = 14.115 N/m.

In the second loading case with a moving load, we assume a pair of joggers (n = 2)
running with a constant velocity of v = 3 m/s. The vertical load per jogger is Pj = 1250 N
and the frequency-dependent reduction factor is determined here as ψ2 = 0.931 based on
Table 9-2 of [2] yielding a load amplitude P2 = n · Pj · ψ2 = 2.328 kN.
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Figure 1. Acceleration response of the model bridge for a moving load.

In the third loading case with a stationary load at the center, we reduce the number
of joggers as n′ =

√
n so that P3 = n′ · Pj · ψ2 = 1.646 kN.

The maximum acceleration in the first and third cases can be calculated as based on
the analytic solution of the damped harmonic oscillator (4):

amax,1 =
2

π

p1L

ζM
= 0.938

m

s2
& amax,3 =

P3

ζM
= 5.204

m

s2

In the second case, the acceleration response was evaluated numerically and is shown in
Fig. 1. The corresponding maximum acceleration is estimated to be around

amax,2 = 1.7
m

s2
.

We observe that uncomfortable acceleration levels (≥ 0.7 m
s2

) are predicted for all loading
cases. We conclude that the jogger loading case is very demanding and the load model
where the load is fixed at the center yields very high accelerations as compared to the
corresponding moving load.
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