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Brief review on high-cycle fatigue with focus on non-metallic
inclusions and forming
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Summary. Professor Y. Murakami has been a dominant figure in the field of fatigue, pinpoint-
ing the most important things for research. However, in order to further improve the prediction
methods, knowing the history, discussions and decisions in the fatigue community are necessary.
This paper aims to give a brief and historical review on various high-cycle fatigue phenomena
focused around non-metallic inclusions and forming.
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Introduction

In the product design process [11] of major components for internal combustion engines
(ICE), the components are validated nowadays by using advanced FE-simulations together
with measurements (see [32, 16, 7, 8, 34]). Understanding the nature of fatigue together
with stochastic methods becomes more and more important in controlling the underlying
uncertainties and thus decision making [33].

Fatigue of higher strength steels is commonly agreed to be dominated by the underly-
ing nonmetallic inclusions. Thus modern quality inspection methods are often based on
the characterization of the realized inclusions in a component during manufacturing. A
comprehensive review on methods for finding inclusions is given in [2].

Variables in fatigue

Murakami and Endo did a thorough review on efforts made to analyze the relation be-
tween fatigue and inclusions in 1994 [22]. They analyzed a large data set and came to
the conclusion that the Vickers hardness HV of a metal and the size of the inclusion,
described by square root of the inclusion area

√
area projected normal to the maximum

principal stress direction, were the main parameters needed to describe the fatigue be-
havior observed in their data set. The

√
area size measure was based on the maximum

stress intensity factors of elliptical cracks of modest aspect ratios (a/b < 5) under normal
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loading [37]. The popularity of this model is no surprise as it requires no fatigue test
to be used and has so far fit well to most experimental observations. The version of the
model we present is given in [18]. The stress intensity factor range of arbitrary inclusion
with dimension of

√
area is

∆K = 0.65∆σ

√
π
√
area, (1)

where ∆σ is the stress range acting in the direction of maximum tensile stress. The
threshold stress intensity factor range ∆Kth is

∆Kth = 3.3× 10−3 (HV + 120)
√
area

1/3
. (2)

Finally, their model predicts the lower limit of fatigue limit σw

σw =
F (HV + 120)

(
√
area)

1/6

(
1−R

2

)0.226+10−4HV

, (3)

where F is a constant depending on whether the inclusion is located on the surface or
inside, R is the stress ratio σmin/σmax.

Before this, various other parameters had been discussed to be relevant as well. The
shape and Young’s modulus of the inclusion were regarded factors that should exist in
the model assessing the severity of inclusions. First order approximations were given by
simply considering the elastic stress concentration factor [1]. Murakami stated that any
slight deviation from smooth shapes greatly affects the stress concentration factors and
thus the use of stress concentration factors is not only unreasonable but also impractical
[22]. Internal stresses stemming from different thermal expansion coefficients and residual
stresses from forming methods have been considered as well [9].

The severity of inclusions has been thought to be linked with the matrix hardness
- inclusion in soft matrix acts as hardener and only in hard matrix it limits the fatigue
properties [10]. Critical ultimate tensile strengths, under which inclusions do not limit the
fatigue properties, have been studied (see the short review in [37] for more). Historically,
brittle oxides are known to be more severe than soft sulphide inclusions due to a higher
stiffness [2].

The critical size of an inclusion, under which fatigue properties were not affected,
was regarded a material specific constant [37]. Melander and Ölund performed high-
cycle rotating bending fatigue tests for the AISI 52100 bearing steel and found that the
smallest alumina-based spherical inclusion found on the fracture surface was of 17 µm
in size whereas the smallest angular titanium nitride was 3 µm [17]. Similar findings
were presented in [5] for 100Cr6 bearing steel. Murakami and Endo based the validity
of their model’s shape ignorance on the experimental findings by Duckworth and Ineson
who artificially introduced spherical and angular alumina particles into ingots and found
no definite difference in fatigue properties already in 1963 [6]. In 1999, Murakami and
Beretta revisited the data from [20] and the shape independence was again emphasized
[18]. The shapes drawn in the paper were still relatively regular (aspect ratio a/b < 5),
and looking at the results, TiN seems to show once again a different kind of behavior.

The scatter in fatigue has been explained by inclusions (see e.g. [23]), but it is worth to
note that Sangid et al. have recently successfully used a physically-based crack initiation
criterion and micromechanics to predict non-inclusion-induced fatigue scatter for U720
[27, 28, 29]. Their model stems from the material sciences side and dislocation dynamics.

Environmental effects, creep, non-proportional multiaxiality, wavy slip mode charac-
teristics and low-cycle fatigue phenomena were left out of the scope of this paper.
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Very high cycle fatigue

A point to be made is that the highest lifetime shown for TiN-induced fatigue failures in
[18] was approximately 20 million cycles. The test lengths have been increased from those
days up to gigacycles by means of higher load frequencies using ultrasonic fatigue testing,
and fatigue failures continue to occur after 20 million cycles [12]. The optically dark area
(ODA), often found in very high cycle fatigue (VHCF), has been a focus of discussion.
Murakami proposed that the VHCF crack does not grow cycle-by-cycle as a conventional
crack inside the ODA but instead, due to the combined effect of hydrogen trapped by the
inclusion along with cyclic stress [21, 23]. The proposed change to equation (3) was to use
the size of the ODA instead of the inclusion size, and the ratio of ODA and inclusion sizes
was shown to increase with cycles to failure. Nakamura et al. contradicted this theory by
pointing out that, in higher stress ratio tests, the ODA becomes less clear [25]. They also
performed tests in a vacuum where the fatigue crack from a notch was first grown and
then the stress levels dropped to such a level that the fatigue crack did not grow. Finally
they grew the crack with a high 0.3 stress ratio in order to get the fracture surface that
they carefully inspected, finding signs of ODA from the area that the crack had grown
through very early in the test. They proposed that ODA is formed in a high vacuum
due to the cyclic compression cycles of the mating surfaces that is emphasized with an
increase in the number of cycles.

Strain age hardening

Recently, Li et al [14] found experimentally a 40.5% higher fatigue crack growth threshold
value ∆Kth (calculated from (1) at the fatigue limit) for Fe-0.017C (wt.%) compared to
the prediction by equation (2) and suspected it to be likely a result of strain-age hardening.
Interstitial free steel in this study followed the predictions of equations (1)-(2). Hardness
evolution due to the strain-age hardening was not measured during the test though.
Wilson concluded in 1970 [35] that for low-carbon steel the strain age hardening must
promote fatigue strength. In a larger review by Wilson in 1977 [36], the characteristics of
strain age hardening and effects on fatigue were discussed. Nakagawa et al. did careful
experiments on carbon steel with the objective to clarify the effect of strain ageing on
the fatigue limit in 1979 [24]. They proposed that the fatigue process is a competitive
process between three factors: damage due to dislocation multiplication, strengthening
due to work hardening and strain ageing. Murakami studied coaxing effects in 1984 [19]
and concluded that cracks initiated at lower stress levels that endure the subsequent
increased stress levels are of primary importance in this field. The nature of strain age
hardening is such that, once the stress is increased enough to make new dislocations and
existing locked ones mobile, the density of mobile dislocations increases rapidly [30]. The
effectiveness of fatigue strengthening by strain age hardening is limited by the instability
of the atmosphere-locked substructure [36]. Wilson acknowledged that crack initiation is
often controlled by nonmetallic inclusions but the strain age hardening retards the stage
I crack propagation by suppression of the plastic zone. Understanding the strain age
hardening will become more important in future, especially for applications like cylinder
heads [13].
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Forming effects

Metallurgists have categorized inclusions on the basis of, e.g., their plasticity index ν -
it is 0 for undeformable inclusions and 1 for inclusion that deforms - together with the
metal matrix [10]. Cracks and cavities are formed to matrix in heavy deformation when
ν < 0.5 [31].

Makino performed very high-cycle fatigue tests on rolled steel with multiple end-
plate thicknesses in 2008. The specimen were cut in parallel and orthogonally to the
rolling direction [15]. The inclusions found from the fracture surfaces were vastly different
especially in the aspect ratio - in parallel the inclusions were mostly regular oxides and also
failures from the matrix occurred whereas, in the other direction, aspect ratios were shown
to be in the range of 5-30, being mostly oxides, oxide clusters and sulfides. The manganese
sulfides are known for their ability to deform and thus emphasize the anisotropy created
in such deformation [26]. Makino highlighted that, for such elongated inclusions, the√
area overestimates the maximum stress intensity factor. The stress intensity factors for

elliptical embedded and surface cracks are given in [3] and [4], respectively. An important
reminder on the elliptical cracks is that the smaller dimension dominates the maximum
stress intensity factor as aspect ratios get higher. Makino found that, for such elongated
inclusions, the formed ODA could be explained by the elliptical crack stress intensity
factor rather well. In the extreme cases, the ODA emanated only from the center area
of the very elongated sulfide (high stress intensity area of the elliptical crack), yielding a
smaller ODA area compared to the inclusion area.

Murakami concluded in [37] that the third dimension (the dimension parallel to the
stress) is an unimportant one. However, the authors would like to point that, if the
sulphide or cluster of oxides is very elongated in the direction of stress, the stress intensities
are relatively high on a longer portion of the inclusion and the probability of finding a
weak crack initiation spot in the surrounding microstructure should increase. Very much
like the case where the probability of finding a bigger inclusion increases with the volume
[2]. If this point is valid, then it should apply when assessing the severity of high-aspect-
ratio inclusions found in the fracture surfaces as well. On the other hand, by using flow
of forces analogy, the forces should have it easier finding a route around this kind of a
discontinuity that starts softly compared to an ideal crack that has no dimension in this
direction - thus the stress intensities should be lower as well.

Conclusions

Some of the major phenomena in fatigue were reviewed with the objective of under-
standing the underlying assumptions and limitations of status quo. Understanding these
phenomena together with the current prediction methods yields natural possibilities to
improve the methodology as well. For example, when dealing with forged or rolled com-
ponents, elongated clusters of oxides or sulfides can be expected. In these situations
understanding the Murakami model’s limitation of aspect ratios should not be forgotten.
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