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A posteriori analysis of classical plate elements

Tom Gustafsson, Rolf Stenberg1 and Juha Videman

Summary. We outline the results of our recent article on the a posteriori error analysis of
C1 finite elements for the classical Kirchhoff plate model with general boundary conditions.
Numerical examples are given.
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Introduction

The purpose of our work is to fill a gap in the literature. Surprisingly, the a posteriori
error analysis for classical plate finite elements has so far only been given for the fully
clamped case and a load in L2, cf. [2]. In our recent work [1], we treated a combination
of all common boundary conditions (clamped, simply supported and free). In addition,
we considered the cases of point and line loads.

The Kirchhoff plate problem

We denote the deflection of the plate’s midsurface by u, the curvature by K and the
moment by M , and we assume isotropic linear elasticity. Hence, it holds

M(u) =
d3

12
CK(u), (1)

with

CA =
E

1 + ν

(
A +

ν

1− ν
(trA)I

)
, ∀A ∈ R2×2, (2)

where d denotes the thickness of the plate. E and ν are the Young’s modulus and Poisson
ratio, respectively. The strain energy for an admissible deflection v is then 1

2
a(v, v), with

a(w, v) =

∫
Ω

M(w) : K(v) dx =

∫
Ω

d3

12
C ε(∇w) : ε(∇v) dx. (3)
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The potential energy l(v) stems from the loading, which we assume to consist of a dis-
tributed load f ∈ L2(Ω), a load g ∈ L2(S) along the line S ⊂ Ω, and of a point load F at
the point x0, so that

l(v) =

∫
Ω

fv dx+

∫
S

gv ds+ Fv(x0). (4)

The total energy is thus 1
2
a(v, v)− l(v), and its minimisation leads to the variational form:

find u ∈ V such that
a(u, v) = l(v) ∀v ∈ V, (5)

with

V = { v ∈ H2(Ω) | v|Γc∪Γs = 0,
∂u

∂n
|Γc = 0}. (6)

We assume that the plate is clamped on the boundary part Γc, simply supported on Γs,
and free on Γf = ∂Ω \ (Γc ∪ Γs).

By the well-known integration by parts, we get the boundary value problem. To this
end we have to recall the following quantities for a admissible displacement v; the normal
shear force Qn(v), the normal and twisting moments Mnn(v), Mns(v), and the effective
shear force

Vn(v) = Qn(v) +
∂Mns(v)

∂s
. (7)

With the constitutive relationship (2), an elimination yields the plate equation for the
deflection u:

A(u) := D∆2u = l, (8)

where the so-called bending stiffness D is defined as

D =
Ed3

12(1− ν2)
. (9)

The boundary value problem is the following.

• In the domain we have the distributional differential equation

A(u) = l in Ω, (10)

where l is the distribution defined by (4).

• On the clamped part we have the conditions: u = 0 and ∂u
∂n

= 0 on Γc.

• On the simply supported part it holds: u = 0 and Mnn(u) = 0 on Γs.

• On the free part it holds: Mnn(u) = 0 and Vn(u) = 0 on Γf .

• At the corners on the free part we have the jump condition on the twisting moment

[[Mns(u)(c)]] = 0 for all corners c ∈ Γf .

Here and below [[·]] denotes the jump.
We consider conforming finite element methods: find uh ∈ Vh ⊂ V such that

a(uh, v) = l(v) ∀v ∈ Vh. (11)

The finite element partitioning is denoted by Ch. We assume that mesh is such that
the point load is a vertex and the line load is along edges. The edges are divided into
interior edges E ih, edges on S, ESh , edges on the free boundary Efh , and edges on the simply
supported boundary Esh. The local error indicators are then the following.

142



• The residual on each element

h2
K‖A(uh)− f‖0,K , K ∈ Ch.

• The jump residuals of the normal moment along interior edges

h
1/2
E ‖JMnn(uh)K

∥∥
0,E
, E ∈ E ih.

• The jump residuals in the effective shear force along interior edges

h
3/2
E ‖JVn(uh)K− g‖0,E, E ∈ ESh , h

3/2
E ‖JVn(uh)K‖0,E, E ∈ E ih \ ESh .

• The normal moment along edges on the free and simply supported boundaries

h
1/2
E ‖Mnn(uh)

∥∥
0,E
, E ∈ Efh ∪ E

s
h.

• The effective shear force along edges on the free boundary

h
3/2
E ‖Vn(uh)‖0,E, E ∈ Efh .

The error estimator is defined through

η2 =
∑
K∈Ch

h4
K‖A(uh)− f‖2

0,K +
∑
E∈ESh

h3
E‖JVn(uh)K− g‖2

0,E +
∑

E∈Eih\E
S
h

h3
E‖JVn(uh)K‖2

0,E

+
∑
E∈Eih

hE‖JMnn(uh)K
∥∥2

0,E
+
∑
E∈Efh

h3
E‖Vn(uh)‖2

0,E +
∑

E∈Efh∪E
s
h

hE‖Mnn(uh)
∥∥2

0,E
.

(12)

Our a posteriori estimate is the following, where the energy norm is defined as ‖|v‖| =
a(v, v)1/2.

Theorem 1 There exists positive constants C1, C2, such that

C1η ≤ ‖|u− uh‖| ≤ C2η. (13)

Numerical examples

In the examples, we have used the Argyris triangle. In the figures, we give the meshes
for the adaptive solution of a square plate with a point and line load, and for a L-shaped
domain with a free boundary for the edges sharing the re-entrant corner and simply
supported along the rest of the boundary.
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Figure 1. The adaptive meshes for the point and line loads.
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Figure 2. The adaptive mesh for the L-shaped domain.
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