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Artificial neural networks models for rate of 
penetration prediction in rock drilling 

Hadi Fathipour Azar, Timo Saksala1, and Seyed-Mohammad Esmaiel Jalali 

Summary. Prediction of the rate of penetration (ROP) is an important task in drilling 
economical assessments of mining and construction projects. In this paper, the predictability of 
the ROP for percussive drills was investigated using the artificial neural networks (ANNs) and 
the linear multivariate regression analysis. The “power pack” frequency, the revolution per 
minute (RPM), the feed pressure, the hammer frequency, and the impact energy were 
considered as input parameters. The results indicate that the ANN with the regression model 
predicts the ROP under different conditions with high accuracy. It also demonstrates that the 
ANN approach is a beneficial tool that can reduce cost, time and enhance structure reliability.  
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Introduction 

The rate of penetration (ROP) in rock drilling is one of the most important parameters in 
drilling economics analyses. New modelling tools like the artificial neural networks 
(ANNs) are able to estimate non-linear and complex relations due to trial and error 
process. The ability of the ANN to learn complex relationships between the input and 
output parameters, and to allow the user to examine the effect of each parameter on the 
outcome make it a potential tool for the ROP prediction. 

Very few works have addressed the application of the neural networks in percussive 
drilling modeling. Aalizad and Rashidinejad [1] studied the predictability of the ROP of 
rotary-percussive drilling based on intact rock properties, rock mass characteristics, the 
operational drilling parameters and some blast-hole parameters. Another recent work by 
Kahraman [2] investigated the ROP of percussive drills based on indirect tests. In the 
present paper, an attempt is made to understand the influence of operational parameters 
on the ROP of a percussive drilling system using the ANN approach. More specifically, 

 
1 Corresponding author. timo.saksala@tut.fi 

https://rakenteidenmekaniikka.journal.fi/index
https://doi.org/10.23998/rm.65342


253 
 

the standard perceptron type of ANN with the backpropagation learning algorithm is 
used.  

Artificial neural networks applied in prediction of the ROP in 
percussive drilling 

Artificial neural networks (ANNs) are a computational model, consisting of 
interconnected groups of input, hidden and output nodes, used in machine learning, 
computer science and many other disciplines. ANN systems can be trained from 
examples to classify and discover new trends or patterns in a data. In the present case, 
the ANN model with the back propagation learning are applied in predicting the rate of 
penetration in percussive drilling based on laboratory data. The data generated in the 
laboratory drilling experiments provided by Sintef (Norway) was utilized for the 
development of ANNs model for the ROP prediction. Selected examples of the 
laboratory date are given in Table 1. Of the 20 laboratory tests available, 70 % (14 data 
points) was used to train the models while the remaining 15 % (3 data points) was 
employed in validation and testing of their performance.  

 
Table 1. Selected test data. 

 
Test pf

 RPM pF
 

f  impE
 ROP 

n° [Hz] [rs/min] [bar] [Hz] [J] [mm/min] 
3 12.5 62 0.3 14.5 21.0 85 
13 12 60 0.29 13.8 8.6 32 
20 18 85 0.35 19.5 40.8 208 
21 18 125 0.55 19.6 42.4 240 
22 18 45 0.55 19.7 41.0 193 

 
The frequency of the “power pack”, fp, provides the hydraulic power to the hammer 

and is a controlled parameter. It determines the frequency of the hammer, f, and the 
impact energy, Eimp, which are consequently not directly controlled. The RPM and the 
feed force, Fp are fully controlled parameters. Thereby, two simulation models were 
constructed. For model I, power pack frequency, RPM, the feed pressure were 
considered as input parameters and for model II, the RPM, the feed pressure, the 
hammer frequency, and the impact energy were considered as the input parameters. The 
ROP was the output parameter for both model. 

The Mean Square Error (MSE) was used as the performance function to evaluate the 
robustness of the constructed model in every iteration. Figure 1 represents the training, 
validating, and testing errors for the finally selected ANNs system throughout the 
training process.  

As the Figure 1 shows, when the neural network with the training data is trained, the 
error decreases. Considering the trend of the following curve, it is observed that the 
validation error decreased to 11 and 12 epochs for model I and II and then it increases. 
According to Figure 1, the appropriate epoch number are 11 and 12 for model I and II, 
respectively. Figure 2 shows the results of training, validating, and the total result of the 
ANNs for model I and II. The network after training has sufficient information about 
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characteristics of the model and can provide acceptable solutions for similar data. The 
results indicate that the ANNs models were satisfyingly successful in making the 
estimations of the ROP.  
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Figure 1. Training and validating and testing errors of the ANNs model model I (left) and model 
II (right). 
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Figure 2. Predicted versus measured ROP for ANNs model I (left) and model II (right). 

Linear multivariate regression (LMR) method 

In order to assess the results of artificial neural networks, Linear Multivariate 
Regression (LMR) model was used. The same data as used in the ANNs was also 
considered in this approach. According to Figure 3, this model also shows good ability 
of estimating the ROP.  
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The relationships between the input parameters and the predicted ROP for model I 
and model II are as follows: ROP = −0.858fp + 0.182RPM+325.324Fp (model I), ROP = 
0.352RPM − 7.266Fp − 3.513f +5.713Eimp (model II). 
 

 

Figure 3. Relationship between predicted and measured ROP, model I (left), model II (right). 

Conclusions 

Artificial neural networks approach was applied in predicting the ROP in percussive 
drilling based on laboratory data. The results suggest that if the data is large enough, the 
ROP can be reliably predicted with this approach.   
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