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Probabilistic framework for product design optimization 
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Summary. Probabilistic methods have gradually gained ground within engineering practices but 
currently it is still the industry standard to use deterministic safety margin approaches to 
dimensioning components and qualitative methods to manage product risks. These methods are 
suitable for baseline design work but quantitative risk management and product reliability 
optimization require more advanced predictive approaches. Ample research has been published 
on how to predict failure probabilities for mechanical components and furthermore to optimize 
reliability through life cycle cost analysis. This paper reviews the literature for existing methods 
and tries to harness their best features and simplify the process to be applicable in practical 
engineering work. Recommended process applies Monte Carlo method on top of load-resistance 
models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing 
a practical framework to use probabilistic models in quantitative risk management and product 
life cycle costs optimization. Our main focus is on mechanical failure modes due to the well-
developed methods used to predict these types of failures. However, the same framework can be 
applied on any type of failure mode as long as predictive models can be developed. 
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Description 

In engineering it still appears to be an industry standard to handle product design with 
deterministic models and risk management with qualitative tools [3], [19], [9], [6]. This 
is rather surprising considering quantitative probabilistic methods are widely in use in 
many other fields such as finance and insurance [8]. Such methods have also been 
introduced to engineering applications more than 50 years ago [5]. In addition, little 
research exists to show the actual performance of traditional qualitative risk management 
methods [8], [2]. On the contrary, literature suggests that even simple quantitative models 
beat expert judgement at prediction and decision making within many practical 
applications [22] [12]. While the performance of qualitative risk management methods 
remains uncertain in the light of scientific research, there is evidence showing the 
superiority of quantitative methods [8], [15], [1]. Based on the trend seen in other fields 
and based on the literature on performance comparisons it appears reasonable to work 
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towards implementing probabilistic quantitative methods in engineering practices as well. 
It is to be noted, however, that these methods should be simple enough to be practical. 

The reliability level to which a certain product should be designed, is a common topic 
of debate. One party often prefers to drive manufacturing costs down, while the other 
argues for higher reliability. From a financial perspective, this debate boils down to a 
product life cycle costs optimization. In other words, there should be a reliability level 
that optimizes the trade-off between manufacturing and quality costs, which realize in 
cases of failure. The idea of optimizing risk exposure in terms of costs within the design 
is not a new one. The literature introduces four general methods to analyze engineering 
decisions: Life Cycle Cost Analysis (LCCA), Utility Theory (UT), Cumulative Prospect 
Theory (CPT) and Life Profitability Method (LPM) [7]. UT & CPT try to incorporate the 
risk preferences of the true decision maker into the objective function while LCCA is 
based on the financial value only [7], [13], [18].  LPM is a version of LCCA, capturing 
more financial information by covering positive cash flows as well [7]. We sympathize 
with the idea of trying to incorporate cognitive biases into decision analysis tool to have 
the optimizer to be in line with a true human decision maker. That makes perfect sense if 
the purpose of the model is to mimic a human decision maker. However, we concentrate 
on models which are financially rational, have the potential to differ from actual human 
opinion and aid in making better decisions. That leaves UT and CPT out of our interest. 
Another argument against UT, CPT and LPM is their added layer of complexity compared 
to LCCA. LCCA methods are simpler since they do not require decision maker specific 
parameters. Decision maker and application specific risk tolerances can be implemented 
simply as an optimization constraint while keeping the optimization process itself as a 
constant. 

Several LCCA approaches have been suggested [11], [10], [17], [16], [4], [14]. This 
paper introduces an alternative LCCA framework, which pursues a simpler and more 
practical approach to tackle the reliability optimization in everyday engineering work, 
while not sacrificing too much prediction accuracy. In order to define the process, we 
apply well-established engineering practices but also borrow from probability theory, 
financial models and decision analysis. 

This paper provides a framework on which to define risk levels while striving to 
maximize product cost-effectiveness. This is achieved by applying optimization 
techniques on financial risk exposure, while considering design and legal requirements 
as well as environmental and safety risks as constraints. First, the process is performed 
on component level and then the component results are extended to the system level. The 
introduced probabilistic design process can be expressed as steps shown in table 1.  

Failure probability and life cycle costs 

In order to predict the failure probability of a component, a mathematical model is 
required. Material mechanical failure models are well-developed and quite accurate, 
therefore we concentrate on them within the scope of this paper. Figure 1 shows a typical 
process flow chart for solving component failure probability in case of mechanical failure 
modes. 

In order to reduce computation time it is preferable to seek for procedures where the 
Monte Carlo iteration loop is a post-processing step for finite element method (FEM). 
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Table 1. Process steps for probabilistic design framework. 

 
Step number Description 

1 Apply a model to predict the failure probability for component design options 

2 Calculate expected life cycle costs for component design options 

3 Consider constraints to define acceptable design space 

4 Choose acceptable design with the lowest expected life cycle costs 

5 Repeat the process for all the components of the system and verify the risks 

on the system level 

 
Fortunately, the stress distribution for practical strength related problems can be often 

solved with reasonable accuracy by applying linear FEM. Findley criterion is generally a 
good choice as a multiaxial fatigue failure criterion for steel materials [20], [21]. 

Capability to solve the failure probability of a component has applications not only on 
risk management but also on minimizing product life cycle costs. In efficient markets the 
product with lower life cycle costs will have a competitive edge, all else being equal. 
Therefore, the exercise of minimizing life cycle costs can also be seen as a process of 
maximizing the customer value of a product having certain given features. 

Following Gardoni et.al. we define the expected life cycle costs E[L(f)] as a sum of 
expected manufacturing cost E[M(f)], discounted expected quality costs E[Q(f)] and 
discounted expected life maintenance costs E[C] according to equation [7] 

Since E[C] is not a function of failure probability f, it can be set to zero while having no 
impact on the optimization result in terms of f [14].  

By manufacturing costs, we refer to all the costs such as material and work that are due 
to the manufacturing and design process of a component. After applying methodology 
shown in figure 1 to solve failure probability, it is also a straightforward practice to 
estimate manufacturing costs for a component design option based on historical data of 
manufacturing similar components. Estimation of the two quantities for several design 
options allows to curve fit a function for expected manufacturing costs E[M(f)]. E[M(f)] 
has a downward sloping shape due to the practical reason that typically the cheaper 
structural design is not as reliable (1-f) as the more expensive one. Obviously, there is no 
reason to mathematically study design details that increase reliability but have no adverse 
effect on manufacturing costs. These are no-brainers and design optimization techniques 
are not required.  

Quality costs 𝑄𝑄𝑖𝑖 can be estimated based on historical data, and as we define them, they 
only realize in case of failure. Therefore, we should be interested in expected quality costs 
E[Q(f)] which is a product of the probability of failure f and the cost of failure 𝑄𝑄𝑖𝑖 
discounted to the same time period with E[M(f)]. Since 𝑄𝑄𝑖𝑖 is a constant for a certain 
failure mode of a component, E[Q(f)] always has an upward sloping shape.  

   E[L(f)] = E[Q(f)] + E[M(f)] + E[C].                        (1) 
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The objective function E[L(f)] is a sum of a downward sloping and an upward sloping 
function. For that reason within all practical problems E[L(f)] has a parabolic shape as 
shown in figure 2. The actual formula of the objective function is case specific and 
therefore the figure 2 is only indicative. Rather, the essential fact is that on a free 
optimization case the minimum of the parabola is an optimal reliability level in terms of 
discounted life cycle costs. Risk management, legal constraints and all the other design 
requirements can be taken into account as constraints for the optimization problem. The 
optimal choice is a feasible and acceptable design with the lowest life cycle costs. 

Following the procedure shown in figure 1, Rolls-Royce has developed an in-house 
code that solves failure probabilities for mechanical failure modes in order to improve 
quantitative risk management within structural design process. The introduced 
probabilistic design methodology is also applied to ensure competiveness of the products. 

 
Figure 1. Process flow chart on solving failure probability. 

 
Figure 2. Life cycle cost function. 
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