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Bayesian sequential experimental design for fatigue tests
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Summary. A Bayesian sequential experimental design for fatigue testing based on D-optimality
and a non-linear continuous damage model was implemented. The model has two asymptotes
for the number of cycles to failure: the fatigue limit and the ultimate tensile strength. With
the introduction and stochastic handling of these asymptotes, the D-optimal design accounts
naturally for the whole range of reasonable testing levels. Sequential design ensures that all the
available data is used efficiently while choosing the next test level.
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Introduction

The fatigue testing has been traditionally divided into testing the SN-curve and the fatigue
limit separately. The staircase-test or up-and-down procedure [3, 11] has been utilized
heavily in finding the fatigue limit median value. The test results have been binary -
failure or survival. The number of cycles was included in the fatigue analysis in this work.
Sequential D-optimal design has been used in this work for choosing the next test level.
This way the amount of information from tests is maximized and the precision of further
analyses [14, 5, 9] increases in the product design process [7]. Bayesian statistics is seen as
a natural tool for this kind of problem providing an easy way of introducing engineering
prior knowledge and uncertainty to the mathematical model (see Model section for more).
A comprehensive review on Bayesian experimental design is given in [2].

Model

Fatigue data analysis is based on a non-linear continuous damage (NLCD) model described
in [1]. By neglecting the mean stress influence and by integrating the damage from 0 to
1, the simplified version [8] of the SN-curve is as follows:

Nf =
〈σu − σa〉
〈σa − σv〉

·
(σa
M

)−β
, (1)

1Corresponding author. miikka.vantanen@gbw.fi

201

https://rakenteidenmekaniikka.journal.fi/index
https://doi.org/10.23998/rm.64924


where Nf is the number of cycles to failure, 〈·〉 correspond to Macaulay brackets, σu is
the ultimate tensile strength (UTS), σa is the stress amplitude, σv is the fatigue limit, β
is slope, and M is related to the intercept of the logarithmic SN-curve, respectively.

A stochastic model of (1) can be achieved by defining a random variable N for the
number of cycles to failure

lnN ∼ N (lnNf (σa|θ), σ) , (2)

where z ∼ N (µ, σ) denotes that z follows a normal distribution with the parameters
(µ, σ), θ is a parameter vector and, here, σ is the standard deviation. With the notation
Nf (σa|θ) we intend to emphasize that the stress amplitude σa is the input parameter for
the mean value of number of cycles to failure. The equation (2) describes the fatigue
life with a given UTS and fatigue limit. The model has two asymptotes σa → σv+ and
σa → σu−. Traditionally these variables are considered stochastic as well

lnσu ∼ N (µlnσu , σlnσu) , (3)

lnσv ∼ N (µlnσv , σlnσv) , (4)

where (µlnσu , µlnσv) are the mean values and (σlnσu , σlnσv) are the standard deviations of
the logarithmic UTS and fatigue limit, respectively. The joint probability is achieved by
marginalization as demonstrated in [12] for the Random Fatigue-Limit Model [10].

An Bayesian approach (see e.g. [6]) was adopted for solving the inference problem. The
benefit of this approach is being able to include prior knowledge of the parameters. In this
case, e.g. the lower limit of UTS can be found from standards and textbooks. Objective
priors can be used for the parameters with uncertainty so the parameter posteriors follow
data likelihood more closely. Another advantage of Bayesian approach is the ease of
including uncertainty in the parameter approximation and uncertainty due to sample
size in the prediction. To avoid computationally heavy marginalization of (3) and (4),
hierarchical modeling [6] in statistical programming language Stan [13] was used.

Bayesian sequential experimental design

The optimal design criteria used here are based on measures taken from the Fisher Infor-
mation Matrix (see e.g. [4])

I(x, θ) = Ey

[(
∂ log f(y|x, θ)

∂θ

)(
∂ log f(y|x, θ)

∂θ

)T ∣∣∣∣ θ
]
, (5)

where ∂F
∂θ

is the gradient of F with respect to the parameter vector θ, x is the design (stress
amplitude), y is a future observation (number of cycles to failure or number of cycles at
test stop) over which the expected value is calculated and f(y|x, θ) is the likelihood
of observing y, given design x and parameters θ. Equation (5) is typically used with
Maximum Likelihood Estimate (MLE) but as in the Bayesian framework the posterior
distribution f(θ|ŷ) gives the possibility to avoid choosing point estimates. Instead one
can calculate an expected value over the parameter space and also yield the expected
Fisher Information Matrix (FIM) as a function of design, having observed data ŷ,

I(x|ŷ) := Eθ|ŷI(x, θ), (6)

where we have interpreted θ as a random variable having the density f(θ|ŷ).
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Figure 1. Example of D-optimality minimization objective function.

A popular optimality criterion is the D-optimality which, in our case, maximizes the
determinant of the expected FIM I(x|ŷ) or equivalently minimizes the determinant of the
inverse of I(x|ŷ), whence the D-optimal design x̃ is given by

x̃ = arg min
x
|I(x|ŷ)−1|. (7)

The D-optimality is used when the inference about the parameters is the main goal of the
analysis [2] and choosing D-optimal design minimizes the volume of a frequentist joint
confidence region for the parameter vector [12]. An example result of the optimization
problem (7) as a function of the design x as well as the optimal design x̃ are visualized in
Figure 1.

Figure 2. Bayesian sequential experimental design.

The shape of the D-optimality objective function with a local minima between the
physical limits is due to the asymptotes in the model (1). Additionally, the developed
framework enables dynamically to vary the runout limit (pre-defined number of cycles
where the test is stopped if no failure has occured) and see how big of an effect it would
have on the D-optimality.
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This is performed in a sequential manner after every test result (observation) so that
all information available is used in deciding the new test level in an optimal manner as
shown in Figure 2.
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Wärtsilä
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