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Two-scale Reissner-Mindlin plate model 

Jouni Freund1 

Summary. A two-scale plate model, in which the displacement assumption consists of the 
Reissner-Mindlin and warping parts, is presented. To reduce the modelling error of the classical 
Reissner-Mindlin model, the warping part is chosen so that the overall displacement satisfies the 
full 3D elasticity equations as well as possible. Pressure loaded isotropic homogeneous plate is 
used as an application example. 
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Introduction 

The classical Kirchhoff and Reissner-Mindlin plate models assume that the normal line 
segments to the midplane move as rigid bodies in deformation, and the transverse 
normal stress is negligible. These assumptions are the key to a simple and practical plate 
model but they are also the source for modelling error. In particularly, prediction of the 
transverse stress components is poor. 

The number of different refined plate models in literature is impressive [2,3]. 
Increasing the polynomial order in the displacement assumption in the transverse 
direction is a popular choice [4,5]. The layer wise displacement assumption in [1] is 
another common choice for a layered plate material. One of the challenges in 
refinements comes from the need to compromise the modelling error with simplicity of 
practical calculations [5]. From this perspective, equivalent single layer theories are 
attractive as they keep the classical mathematical form of the plate equations. 

Use of a displacement assumption which consists of the classical and warping parts 
is one of the ways to reduce the modelling error. In the present computational 
homogenization application, the RVE (Representative Volume Element) is the normal 
line segment to the midplane and the classical and warping displacement parts represent 
the slowly and rapidly varying parts of displacement in the scale of the RVE. 
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The standard solution methods and software for the Reissner-Mindlin equations 
suffice, as the two-scale plate equations to be solved numerically are of the classical 
form. There, the main ingredients are the shear correction factors as predicted by the 
two-scale model. 

Two-scale plate model 

In what follows, the domain occupied by a plate is denoted by 3( , , )x y z Z∈Ω× ⊂   in 
which 2( , )x y ∈Ω⊂   is the reference plane and z Z∈ ⊂   is the coordinate to the 
normal direction of the reference plane. According to the linear elasticity theory, 
displacement u  of plate is given by the principle of stationarity of the total potential 
energy functional 
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surface force q  acting on the top and bottom surfaces, and external surface force t



 
acting on the boundary surfaces. 

Without additional assumptions, stationarity of the functional implies the generic 
equilibrium equations of linear elasticity. Equilibrium equations of plate models follow 
from the same principle with additional kinematic and kinetic assumptions. With the 
displacement assumptions of the classical Kirchhoff and Reissner-Mindlin models 
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respectively, the outcome is a boundary value problem on a two-dimensional domain Ω  
which results into great savings in computations compared to the computations with the 
generic equations on ZΩ× . The Reddy model displacement assumption [4,5] 
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is a modification of the Reissner-Mindlin model with a warping displacement part of ‘a 
priori’ form. The two-scale plate model employs the same idea, but treats the warping 
part, denoted by v , as an unknown of the plate problem. The kinematic assumptions 
consist of 
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In the second assumption, the derivatives of v  except that with respect to the transverse 
coordinate are considered to be negligible compared to the other terms of the 
displacement gradient. Orthogonality of the Reissner-Mindlin and warping parts in the 
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third assumption implies uniqueness of the warping solution as rigid body motion of the 
normal line segments is included in the classical Reissner-Mindlin part. The two-scale 
model does not use any kinetic assumptions whereas the classical and Reddy models 
assume that 0zzσ = .   

Two-scale plate equations 

Derivation of the two-scale plate equations follows the usual lines of the classical plate 
models. The displacement assumption is substituted into the potential energy functional 
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in which the Lagrange multiplier λ


 is of the same form as Muδ  . Stationarity with 
respect to unknowns in Mu  gives the well-known Reissner-Mindlin plate equation set. 
Stationarity with respect to λ



 and v  gives the equation set 
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which defines kσ σ≡ ⋅


  , v  and λ


 uniquely. The jump conditions on the second row 
enforce the transverse stress σ  and warping displacement v  to be continuous on I Z⊂  
where material properties are not continuous.  

The two equation sets are connected by stress expression M sσ σ= +
    which is 

composed of the Reissner-Mindlin and warping parts. However, as a rather simple 
closed form solution to s  exists, efficient implementation based on a modified 
constitutive equation of the Reissner-Mindlin model is possible. There, the main 
ingredients are the shear correction factors as predicted by the two-scale model. 

Isotropic homogeneous plate example 

Homogeneous isotropic plate of thickness t  loaded by pressure p on the top surface is 
used as an application example. Reference plane is chosen to coincide with the 
midplane. Solutions to the warping displacement components 
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differ from the ‘a priori’ expressions in eq. (4). It is noteworthy that the transverse 
displacement of two-scale model contains a modification due to the Poisson effect. 
Transverse stress components 
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satisfy the traction conditions at the bottom and top surfaces / 2z t= ± . The remaining 
stress components are given by 
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Integration of the transverse shear stress components over the thickness gives the 
classical values 5/6 of the Reissner-Mindlin model shear correction factors. 
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