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Stiffness and strength of a semi-regular lattice

Tomas Their and Luc St-Pierre!

Summary. Honeycombs and other lattice materials have the advantage that their topology
can be designed to achieve unique combinations of properties, such as high strength at low
density. The work presented here is exploratory in nature: we investigated the mechanical prop-
erties of the two-dimensional semi-regular snub square lattice and compared its performances
to other topologies. Analytical expressions for the uniaxial stiffness and compressive strength
were developed and validated against Finite Element simulations. The results showed that the
snub square lattice is stiffer and stronger than the diamond lattice, and has a higher resistance
to elastic buckling than the triangular lattice.
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Introduction

Lattice materials are interconnected arrays of struts, and they possess a major advan-
tage over conventional materials: their architecture can be designed to achieve unique
combinations of properties, such as high strength at low density [1]. A few examples of
two-dimensional lattices are given Fig. la-c; these can be categorised as regular, semi-
regular or other. Regular lattices are made by tessellating a regular polygon; hence, there
are only three possibilities: triangular, square and hexagonal. Semi-regular tessellations,
like the Kagome lattice, are generated using two or more regular polygons. It can be
shown that there are only eight semi-regular combinations possible[2]. Finally, other
topologies, such as the diamond lattice, can be constructed using two or more polygons
of different sizes.

The mechanical properties of lattices are governed by three parameters: its topology,
the properties of the parent material and its relative density p. The latter is defined as
the volume fraction of solid material, and can be expressed as a function of the strut
thickness t and length [ according to:

p=4(7). )
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Figure 1. Examples of different lattice topologies: (a) triangular, (b) Kagome, (¢) diamond and (d) snub
square.

where the constant A depends on the topology, see Table 1. Similarly, the lattice’s elastic
stiffness F, elastic buckling strength o,; and yield limit &, can be expressed as:

E = BpEs, 64=Cp’E, and &, = Dpoys, (2)

respectively, where the Young’s modulus F and yield strength o, are the properties of
the cell wall material. Values of B, C' and D are also included in Table 1 for compression
along the x5 direction. Comparing these coefficients reveals that the Kagome lattice offers
the best performances, mainly due to its high elastic buckling strength (coefficient C').

The Kagome lattice is a semi-regular tessellation and its high stiffness and strength
are encouraging enough to justify investigating the properties of other semi-regular mor-
phologies, such as the snub square lattice shown in Fig. 1d. Therefore, the objective of
this study is to derive the value of A, B, C' and D for the snub square lattice and compare
its performances to those of existing architectures.

Analytical modelling

The snub square lattice can be constructed by tessellating the unit cell shown in Fig.1d
and its relative density is given by:

2 () ()

With a simple structural analysis, it is possible to express the force in each strut of
the lattice Fj as a function of the remote nominal stress o> as:

Table 1. Coefficients for the relative density, stiffness, elastic buckling strength and yield limit.

Topology A B C D Reference
Triangular ~ 2v/3 /3 0.0914 1/3 [1, 3]
Kagome V3 1/3 0366 1/3 [1,3]
Diamond 5/V3 1/5 00789 1/5  [3]

Snub square 20/(1++/3)2 0.280 0.125  0.273 this work
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where b is the depth of the lattice (in the out-of-plane direction). The nominal compressive
strain € = 40°°1/(3E,t) can be obtained using the principle of virtual work and it follows
that the lattice’s stiffness E' is given by:

N 3(15) 3(1 4 v/3)?

= = - )| = ——p~0.280p. 5

e B, 4\l g P ©)

The elastic buckling strength of the lattice is derived by equating the force in the most
loaded member (F}) to the Euler buckling load for a built-in strut, which gives:

mEbt? Gy 27?2 (t)3
F = o S (2] x~0.125p°% 6
o3 T B 3(1+v3) \ g ®)

Otherwise, the yield limit of the lattice is obtained when the stress in beam 1 reaches the
yield strength o,,, and this returns:

G 2 t (1++/3)

Fl=obt="Y=—"_|(-)="—""5~0.273p. 7

These analytical relations were validated against Finite Element (FE) simulations, and
the model developed is described in the next section.

Description of the Finite Element model

All calculations were performed with the implicit solver of the commercial software Abaqus.
The cell walls were assumed to be made from a linear elastic perfectly plastic solid char-
acterised by a Young’s modulus F; = 200 GPa, a Poisson’s ratio v = 0.3 and a yield
strength o, = 200 MPa.

The simulations were done on the unit cell shown in Fig. 1d: periodic boundary condi-
tions were imposed such that the nominal compressive strain €55 was prescribed whereas
natural (stress free) boundary conditions were imposed in the x; direction. Each strut
of the unit cell was discretised using 50 Timoshenko beam elements. Note that since
the slenderness ratio [/t is greater than 10 in all cases, the struts behaved essentially as
Euler-Bernoulli beams, which is consistent with the assumptions of our analytical model.

A small geometric imperfection was introduced in the FE model. The perturbation
affected the entire geometry and had the shape of the first buckling mode (obtained from
an eigenvalue buckling analysis) with an amplitude of 0.01¢. Note that the simulations
were relatively imperfection insensitive: modifying its shape to a combination of buckling
modes and changing its amplitude within 0.001¢-0.05¢ had a minor effect on the results.

Results and discussion

The analytical and FE predictions are compared in Fig.2a and b for the normalised
stiffness and normalised compressive strength, respectively. The compressive strength
is the minimum value between the elastic buckling stress and the yield limit, 7.e. 6 =
min(de, o). In general, there is a good agreement between FE and analytical results,
which indicates that Eqs. (5-7) are accurate.
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Figure 2. Comparison between analytical and FE results for the snub square lattice: (a) normalised
stiffness and (b) normalised compressive strength as a function of relative density p. The normalised
compressive strength of different lattices is compared in part (c).

A comparison with other topologies reveals that the snub square lattice is softer than
triangular and Kagome architectures, but stiffer than the diamond lattice, see Table 1.
The normalised strength of these lattices is compared in Fig. 2c: the results show that the
snub square lattice is stronger than diamond and also outperforms the triangular lattice
for p < 0.06 because of its high elastic buckling strength.

Conlusions and future work

Analytical relations for the stiffness and compressive strength of the snub square lattice
were derived and validated against FE simulations. The performances of the snub square
lattice were found to be inferior to those of the Kagome lattice, but superior to the ones
of the diamond tessellation. An experimental validation is currently underway while the
response of the snub square lattice in shear remains to be investigated.
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