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JuliaFEM — open source solver for both industrial and
academia usage

Tero Frondelius1 and Jukka Aho

Summary. The JuliaFEM software library is a framework that allows for the distributed
processing of large Finite Element Models across clusters of computers using simple programming
models. It is designed to scale up from single servers to thousands of machines, each offering
local computation and storage. The basic design principle is: Everything is non-linear. All
physics models are non-linear from which the linearizations are made as special cases. This is a
work in progress. Thus, if you share the vision, contribute and join the community.
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Introduction

The JuliaFEM project was started in May 2015 and is MIT licensed [6]. However, the story
actually starts from years back of studying and using other open-source FEM packages.
The findings were mainly divided into two categories: namely first, academic projects with
pure academic goals and parallelism missing and, second, fast parallel codes that were so
hard to start using and typically written-in statically compiled languages. Customizing
software written using such languages requires significant developer time, thus sacrificing
human convenience and even more importantly, typically very limited developer resources
for software execution speed.

JuliaFEM is an open-source finite element solver written in the Julia programming
language, which is comprehensibly described in [3]. All the same reasoning are true for
why Julia and why JuliaFEM, in other words why new programming language was needed.
Reference [3] answers the first question throughly, thus the authors encourage readers to
read it or visiting https://julialang.org/. JuliaFEM enables flexible simulation models,
takes advantage of the scripting language interface which is easy to learn and embrace. In
addition, it is a real programming environment where simulation can be combined with
other analyses and work-flows. These features introduce a place for testing new ideas and
simulation models to the academic world.
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Julia introduces the following features: JIT/LLVM [10], multiple dispatch, metapro-
gramming, very powerful macros (full programming language with Julia syntax), static
and dynamic typing. The speed of Julia is really close to the speed of C/FORTRAN
code. Julia shows that one can have machine performance without sacrificing human
convenience. Julia combines expertise from the diverse fields of computer science and
computational science to create a new approach to numerical computing. Julia is de-
signed to be easy and fast to use. One of the key features of Julia is multiple dispatch,
a technique from computer science which automatically picks the right algorithm for the
right circumstance [3].

Julia provides a wide range of libraries and a very skilled community in both skills
and education, which enables a high level of abstraction in the programming code, such
as using the automatic differentiation library ForwardDiff [16] for calculating gradients,
jacobians and hessians for all types of field data. Using automatic differentiation in a FEM
package is not a new idea; for example FEniCS [1], an open-source FEM solver, uses it
comprehensively. Another important feature of the open-source software development is
the method of building on top of existing open-source work. Thus JuliaFEM offers an io-
interface to CODE ASTER [17], also an open source FEM solver. Developing JuliaFEM
also encourages good practices, starting from unit testing both for smaller and larger
functions and continuing to full integration testing of different platforms.

At the moment, users can perform the following analyses with JuliaFEM: elasticity,
thermal, eigenvalue, contact mechanics, and quasi-static solutions. For visualization,
JuliaFEM uses Paraview [2] which prefers XDMF [13] file format using XML to store
light data and HDF [18] to store large data-sets, which is more or less the open-source
standard.

Vision

On one hand, the vision of the JuliaFEM includes the opportunity for massive paralleliza-
tion using multiple computers with MPI and threading as well as cloud computing re-
sources in Amazon, Azure [7] and Google cloud services together with a company internal
server [9]. And on the other hand, the real application complexity including the simula-
tion model complexity as well as geometric complexity, see some examples in [4, 8, 19].
Not to forget that the reuse of the existing material models [11] as well as the whole
simulation models are considered crucial features of the JuliaFEM package [5, 12].

Recreating the wheel again is definitely not anybody’s goal, and thus we try to use
and embrace good practices and formats as much as possible. We have implemented
Abaqus/Calculix [21] input-file format support and maybe will in the future extend to
Other FEM solver formats. Using modern development environments encourages the user
towards fast development time and high productivity. For developing and creating new
ideas and tutorials, we have used Jupyter notebooks [15] to make easy-to-use handouts.

The user interface for JuliaFEM is Jupyter Notebook [15], and Julia language itself is a
real programming language. This makes it possible to use JuliaFEM as a part of a bigger
solution cycle, including for example data mining, automatic geometry modifications,
mesh generation, solution, and post-processing and enabling efficient optimization loops.
In the next section a concrete example including statistical inference combined to FEM
calculation is shown.
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Big numerical example

Typical examples in industrial applications include non-linear solid mechanics [11], contact
mechanics [20], finite strains [14], and fluid structure interaction problems. Here there
is some simulation of machine parts having different amounts of elements and DOF’s for
comparison reasons. These simulations take a lot of computational resources, and here
are specs of the used hardware: 24 x Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz with
512 GB total memory.

Table 1. This table demonstrates the solution times for some real industrial size FEM models

DOFS Assembly time (s) Solution time (s) Total time (human readable)

3.0 M 458 312 16 min
10.8 M 3257 3255 2 h 4 min
12.6 M 3654 6318 3 h 4 min

Figure 1. Real industrial size FEM model.
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[8] Juho Könnö, Tero Frondelius, Thomas Resch, and Maria Jose Santos-Descalzo. Sim-
ulation based grid compliance. In CIMAC Congress Helsinki, 2016.
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form. Rakenteiden Mekaniikka, 50(3):234–238, 2017. URL https://doi.org/10.

23998/rm.64621.

[10] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis and transformation. pages 75–88, San Jose, CA, USA, Mar 2004.

[11] Anton Leppänen, Asko Kumpula, Joona Vaara, Massimo Cattarinussi, Juho Könnö,
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