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Honey Badger Algorithm for optimizing truss structures
with discrete design variables
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Summary An optimization strategy utilizing the Honey Badger Algorithm (HBA) is formu-
lated in this article for the optimal design of truss structures with discrete variables under
multi-load scenarios. HBA is implemented to optimize fundamental design criteria that involve
the cross-sectional areas of the truss members. Structural evaluations are conducted by analyz-
ing different cross-sectional configurations, with the primary objective of minimizing the total
mass of the structure while satisfying stress and displacement constraints. The HBA is used as
a metaheuristic optimizer to explore the design domain and converge towards optimal configu-
rations. This approach is applied to several benchmark examples, including planar and spatial
trusses, and the results are compared with existing studies to assess the algorithm’s perfor-
mance. The optimization outcomes confirm the effectiveness and robustness of HBA in solving
constrained structural optimization problems, as well as its ability to achieve rapid convergence
toward high-quality solutions.
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Introduction

The optimization of truss structures remains a fundamental challenge in structural en-
gineering, aiming to design lightweight and cost-effective systems that satisfy stringent
mechanical strength and stability constraints.This field has garnered significant attention
in the computational mechanics community due to the nonlinear behavior exhibited by
many real-world structures, often caused by complex geometric configurations and mate-
rial properties [1, 2]. Truss systems are widely employed in engineering applications such
as buildings, towers, bridges, and aerospace frameworks, consist of interconnected bars
joined at nodes and are designed to efficiently carry loads while minimizing structural
mass [3, 4, 5]. The optimal design involves determining the appropriate cross-sectional
areas and spatial configuration of the elements, subject to constraints on stresses and
displacements. The complexity of truss optimization stems from the presence of both
continuous and discrete design variables. Traditional optimization techniques typically
assume continuous variables, which may not be suitable for practical scenarios where
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cross-sectional areas are selected from a predefined set of standard profiles. Moreover, an-
alytical and classical mathematical programming methods, including linear and nonlinear
programming [6], although useful for simple problems, often fail to handle the nonlinear-
ities and high-dimensionality associated with real-world truss structures. These methods
usually require rigid problem formulations and may lack robustness when dealing with
multiple constraints or nonconvex objective functions. In parallel with structural opti-
mization, stochastic modeling techniques have proven to be relevant for understanding the
dynamic and uncertain behavior of physical systems [7, 8]. Such an approach contributes
to enhancing the robustness and reliability of truss designs.

To address these limitations, researchers have increasingly turned to evolutionary
metaheuristic algorithms. Inspired by natural, biological, or physical processes, such
algorithms include Particle Swarm Optimization (PSO) [9, 10, 11, 12|, Genetic Algo-
rithms (GA) [13, 14, 15, 16, 17], Harmony Search (HS) [18, 19], Ant Colony Optimization
(ACO) [10, 20], Differential Evolution (DE) [21], Artificial Bee Colony (ABC) [22], Bees
Algorithm (BA) [23], Firefly Algorithm [24], Cuckoo Search (CS) [25], and Symbiotic Or-
ganisms Search (SOS) [26], among others [28, 7, 16]. These methods are especially useful
for solving complex, multimodal problems by effectively exploring vast design spaces and
avoiding premature convergence to local optima. Several studies [17] have shown that
metaheuristic algorithms can outperform classical methods in terms of both accuracy and
computational efficiency, especially for large-scale and highly nonlinear design problems.

In this context, the Honey Badger Algorithm (HBA) has newly emerged as a promising
metaheuristic optimization method modeled by the intelligent foraging behavior of honey
badgers, HBA balances exploration and exploitation using dynamic digging and hunting
strategies [29, 30, 31]. The algorithm adapts its search patterns over iterations, making
it particularly effective in navigating nonconvex search spaces and identifying global op-
tima. Compared to traditional evolutionary algorithms, HBA offers a simple yet powerful
mechanism for optimization, with competitive convergence performance and robustness
across a variety of engineering applications.

This study explores the application of HBA for the optimization of truss structures
with discrete design variables, where the primary goal is to minimize structural weight
while adhering to stress and displacement constraints. The proposed method applies HBA
to optimize the cross-sectional areas of truss members chosen from a predefined catalog,
while also allowing for geometric variability in certain cases. To evaluate the effective-
ness of HBA, we conduct simulations on several benchmark truss problems, including
planar and spatial configurations (e.g., 10-bar, 15-bar, and 25-bar structures). The re-
sults are then compared with those reported in the literature using other metaheuristic
techniques. While HBA shows promising results, its performance may vary depending
on factors such as parameter tuning, initial population quality, and problem complexity.
Moreover, like other metaheuristic methods, HBA lacks a strict mathematical proof of
convergence, which limits the generalization of its observed performance. These limita-
tions indicate that further testing on a wider range of structural problems is necessary to
comprehensively assess the robustness and scalability of the algorithm.

Our findings demonstrate that the Honey Badger Algorithm is a viable and competi-
tive alternative for structural optimization problems, particularly those involving discrete
variables (i.e., variables that can only take specific predefined values, such as standard
cross-sectional areas) and nonlinear constraints. The method exhibits relatively fast con-
vergence, effective constraint handling, and the ability to identify high-quality solutions
in the studied examples, while its performance may vary depending on the problem type,



parameter settings, and initial population. These observations highlight the potential
of HBA for broader application in structural engineering optimization, although further
studies are needed to confirm its general efficiency.

Honey Badger Algorithm

This section presents the biological foundation and mathematical modeling of the HBA,
inspired by the remarkable foraging behavior of the honey badger in its natural habitat
as described by [29, 30].

Figure 1. (a) Honey badger bites a venomous snake, and (b) Honey badger eats prey fearlessly on the
ground.

Biological overview of the Honey Badger

The honey badger (Mellivora capensis) is a small yet fearless mammal, recognizable by
its distinctive black and white fur. It inhabits semi-arid regions and rainforests across
Africa, Indian, and the Southwest Asia subcontinent. Despite its modest size measuring
between 60 to 77 cm in length and weighing between 7 to 13 kg, the honey badger is
known for its aggressive temperament and formidable hunting capabilities, preying on
over sixty species, including venomous snakes. Highly intelligent, the honey badger has
been observed using tools and can climb trees to access bird nests and beehives (See
Fig.). It is a solitary animal that resides in self-dug burrows and only interacts with
other badgers during mating. With 12 recognized subspecies, honey badgers reproduce
year-round, without a fixed breeding season. Their bold behavior is legendary: when
cornered, they do not hesitate to confront predators much larger than themselves. This
resilience, along with their versatile foraging skills, makes them a compelling inspiration
for metaheuristic algorithm design as noted by [29]).

Foraging behavior and its algorithmic analogy

In the wild, the honey badger primarily locates its prey by moving slowly and using its
highly developed olfactory senses. Once a scent is detected, it estimates the prey’s location
and initiates a digging process to capture it. Remarkably, a single honey badger may dig
up to fifty holes in a single day within a radius exceeding 40 kilometers during food
search. Though it is fond of honey, the honey badger is not efficient at locating beehives.
Interestingly, it forms a mutualistic relationship with the honeyguide bird, which can
locate hives but cannot access the honey. The bird leads the badger to the hive, which
the badger then opens using its powerful claws allowing both species to benefit from the
cooperation [32].
The HBA mimics this dual foraging strategy through two operational modes:
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e Digging Mode: The algorithm simulates the badger’s use of olfactory tracking to
locate prey and determine optimal digging points.

e Honey Mode: Inspired by its collaboration with the honeyguide bird, this mode
models a more direct guidance toward optimal solutions.

These behaviors form the core of HBA’s exploration and exploitation strategies, en-
abling it to effectively navigate complex optimization landscapes.

Mathematical modeling of the HBA

As previously described, the HBA operates based on two core behavioral strategies: the
digging phase and the honey-guided phase. These phases correspond to the dual mech-
anisms of exploration and exploitation, making HBA a suitable method for global opti-
mization tasks.

Algorithm framework

This subsection presents the mathematical foundation underlying the HBA. Conceptu-
ally, HBA is structured to balance global exploration with local exploitation, allowing
it to effectively traverse the solution space and converge toward optimal solutions. The
pseudocode of the algorithm, outlined in Algorithm 1, consists of three main stages: ini-
tialization of the population, fitness evaluation of each solution, and parameter update
based on the foraging logic of honey badgers. The population of candidate solutions is
modeled as a matrix, where each row corresponds to a distinct agent (honey badger), and
each column represents a dimension of the search space:

11 -+ T1D
X=1|: - (1)

IN1 *°° XIND

Here, the position of the i*" agent is expressed as:

Xi:[xilyxiQa--'axiD], Z':]_727.”’N (2)

where D denotes the number of design variables (i.e., the dimensionality of the problem),
and N represents the total number of agents in the population.

Step 1: Population initialization

The optimization process begins by generating an initial population composed of N honey
badgers. The initial position of each individual, representing a potential solution, is ran-
domly generated within the bounds of the search space according to the following equation:

where x; is the position vector of the i*® honey badger, Ib; and ub; define the lower and
upper boundaries of the i** dimension, respectively, and 7 is a uniformly distributed ran-
dom variable in the range [0, 1]. This initialization ensures a diverse initial distribution
of solutions within the permissible domain.



Step 2: Intensity

In the HBA, agents are guided toward the best solution by mimicking the scent-tracking
behavior of real honey badgers. The scent fades with the square of the distance, as de-
fined by the inverse square law. Thus, the scent intensity I; perceived by the i*" agent is
modeled as:

I — ro X (T — xz’+1)2 (4)
4<5’7prey — x;)?

In this formulation, (z; — x;,1)? represents the source intensity S emitted by the prey,
d; = Tprey — x; is the distance between the agent and the prey, and ry is a random value
uniformly distributed in [0,1]. The term z,., denotes the position of the prey, which
corresponds to the globally best solution identified so far. This mathematical modeling
enables each agent to dynamically adjust its movement toward optimal regions in the
solution space based on the perceived strength and proximity of the target.

Step 3: Density factor

The density factor « plays a critical role in controlling the randomness of the agents’ move-
ments over time. It enables a smooth shift from global exploration to local exploitation by
gradually reducing its influence as the optimization progresses. In this implementation,
it is computed using a Gaussian decay function defined as:

a=C-exp (t_t ) (5)

max

where t is the current iteration count and t,,,, is the total number of iterations, and C
is a constant value of > 1 | set C' = 2. This nonlinear decay mechanism accelerates the
transition from exploration to exploitation, encouraging more intensive local search as the
algorithm converges.

Step 4: Strategy to escape local optima

To enhance global search capability and avoid premature convergence, the algorithm in-
troduces a control flag F that dynamically modifies the direction of exploration. This
mechanism increases the likelihood of escaping local minima by diversifying the explo-
ration patterns and reinforcing the search around unexplored or suboptimal areas of the
solution space.

Step 5: Position updating mechanism

The evolution of each candidate solution (i.e., honey badger) is guided by two behaviorally
inspired strategies: the digging phase and the honey phase. A random number determines
which phase is activated at each iteration for each agent, promoting both exploration and
exploitation. In addition to the position update mechanisms, it is crucial to ensure that
candidate solutions satisfy structural constraints. Mechanical stress and displacement
constraints are enforced using a penalty-based mechanism. Any candidate solution that
violates a constraint is assigned a penalty proportional to the magnitude of the violation,
which is incorporated into the objective function. Iterations are not stopped when con-
straints are exceeded; instead, the algorithm continues exploring the design space. The
final solutions are those that achieve the minimum structural weight while satisfying all
constraints.



Step 5.1: Digging phase
When the digging mode is triggered (with probability 0.5), the agent simulates a nonlinear
local search behavior using the following update rule:

Tnew = Tprey — F'd - cos(2mr) + aN(0,1) (6)

where Z ey is the current best solution, ' € [—1,+1] is a random directional factor, d is
the estimated distance to the prey, r ~ U(0,1) is a random scalar, « is the time-adaptive
density factor, and N(0, 1) is a standard normal random vector.

Step 5.2: Honey phase
If the honey phase is selected, the agent updates its position according to a more direct
guidance strategy toward the prey:

Tnew = Tprey — F'd 4+ aN (0, 1) (7)

This mechanism encourages more straight forward convergence while maintaining ran-
domness through a weighted noise. The alternation between these two strategies enhances
the global search capabilities of the HBA and helps avoid premature convergence. This de-
scription clarifies the internal functioning of HBA, detailing how the alternation between
the digging phase and the honey phase balances global exploration and local exploita-
tion, and how the adaptive density factor a helps maintain solution diversity and avoid
premature convergence.

Formulation of the structural optimization problem

In this structural design optimization study, the primary objective is to minimize the
total weight of the structure while satisfying specified constraints on nodal displacements
and member stresses. The design variables correspond to the cross-sectional areas of the
truss elements, which are selected from a predefined set of standard section sizes. The
optimization problem is expressed as:

d
min W(X) = 2 piAiLi (8)

subject to  ¢;({X}) <0, i=1,2,...,n. (9)

To handle these constraints in a metaheuristic framework such as the HBA, a penalty-
based reformulation is applied. The penalized objective function becomes:

Frenatnea(X) = W(X) + 2> max(0, g,(X))? (10)

i=1

where, this formulation, X = {41, Ay, ..., A;} denotes the vector of design variables, where
each A; corresponds to the cross sectional area of the i*" truss member. The parameter d
is the total number of structural members, and m is the number of nodes in the structure.
For each element ¢, p;, A;, and L; represent the material density, cross-sectional area,
and length, respectively. The constraint functions g;(X) may include stress limits of the
form 0;(X) — omax < 0, displacement limits such as 0,;(X) — dmax < 0, and bounds on the
design variables X} < X; < X}'. Here, 0yax and 0.y represent the allowable stress and



displacement thresholds, respectively, and A\ is the penalty coefficient used to penalize
constraint violations.

Algorithm 1 Pseudo-code of the simplified HBA

1: Set parameters: tya, (max iterations), N (population size)

2: Initialize population of N honey badgers with random positions in [lb, ub]
3: Evaluate the fitness of each agent using the objective function, assign to f;
4: Save the best agent as zpey With fitness fyrey

5: for t =1 to t. do

6: Compute the density factor a

7: for :=1to N do

8: Generate random number r

9: Compute distance vector d = Tprey — ;5

10: Generate directional flag F', where F' € {—1,+1}

11: if » < 0.5 then

12: Update position: PV = zpey — Fd + aN(0,1)

13: else

14: Update position: PV = zpey — F'd - cos(2mr) + aN (0, 1)
15: end if

16: Evaluate frv

17: if fiV < f; then

18: Ti < x;v

19: fi — 1V
20: end if
21: if f; < forey then
22: Tprey < Tj
23: b prey < Ji
24: end if
25: end for
26: end for
27: return Ty,

Results of numerical examples

In this section, we evaluate the performance of the HBA in solving structural optimization
problems involving truss systems. Three benchmark design cases are considered, with the
objective of minimizing the total structural weight using discrete cross sectional areas
as design variables associated with the truss members. For each example, the HBA was
executed over 50 independent runs to ensure statistical reliability of the results. The
algorithm was implemented in Python, and all simulations were carried out on an HP
workstation equipped with a 7th generation Intel Core i7 processor (3.4 GHz) and 64 GB of
RAM. The performance of the HBA was assessed based on the best solution obtained and
was compared with results reported in previous studies. In all benchmark truss structures
analyzed, the following assumptions are made: the structures are considered weightless,
experience small displacements, and are supported by hinged (pinned) supports.



P 360 in Sl 360 in |
AP, AP,
2
o) ____
A
9 10
5 360 in

_N_
17 y 12
v P1 A 4 P1

Figure 2. A 10-bar truss structure in a planar configuration.

The 10-bar plane truss structure

The 10-bar truss structure illustrated in Figure 2 serves as a classical benchmark in
structural optimization. Reference solutions for this problem have been extensively doc-
umented in the literature, including studies by [33, 34, 35, 36]. The structure consists of
a two-dimensional cantilever truss with fixed supports and externally applied loads.

The material properties include a Young’s modulus of 10000 ksi and a a density of
0.1 b/ in®. The maximum allowable nodal displacement is limited to £2 inches in both
horizontal and vertical directions. The members are subjected to axial stress constraints
of £25 ksi under both tension and compression. Two cases are considered: Case 1,
P, =100 kips and P> = 0; and Case 2, P, = 150 kips and P, = 50 kips.

The optimization problem involves 10 design variables, each representing the cross-
sectional area of a truss member.

Discrete design scenarios are considered. In Case 1, allowable cross-sectional areas
are selected from the set: L = [1,62, 1,80, 1,99, 2,13, 2,38, 2,62, 2,63, 2,88, 2,93, 3,09,
3,13, 3,38, 3,47, 3,55, 3,63, 3,84, 3,87, 3,88, 4,18, 4,22, 4,49, 4,59, 4,80, 4,97, 5,12, 5,74,
7,22, 7,97, 11,50, 13,50, 13,90, 14,20, 15,50, 16,00, 16,90, 18,80, 19,90, 22,00, 22,90, 26,50,
30,00, 33,50] (in?). In Case 2, The discrete variables were chosen from the following set:
L = 10,1, 0,5, 1,0, 1,5, 2,0, 2,5, 3,0, 3,5, 4,0, 4,5, 5,0, 5,5, 6,0, 6,5, 7,0, 7,5, 8,0, 8,5, 9,0,
9,5, 10,0, 10,5, 11,0, 11,5, 12,0, 12,5, 13,0, 13,5, 14,0, 14,5, 15,0, 15,5, 16,0, 16,5, 17,0,
17,5, 18,0, 18,5, 19,0, 19,5, 20,0, 20,5, 21,0, 21,5, 22,0, 22,5, 23,0, 23,5, 24,0, 24,5, 25,0,
25,5, 26,0, 26,5, 27,0, 27,5, 28,0, 28,5, 29,0, 29,5, 30,0, 30,5, 31,0, 31,5] (in?).

The HBA was implemented in Python and applied to both cases. The key parameters
were selected according to the specific structure optimization problem. The population
size was set to N = 20, and the number of iterations was fixed at t,,x = 5000 to ensure



sufficient convergence. The density factor a was adapted dynamically during the search
process using a nonlinear decay function defined in equation 5.

As a stochastic optimization method, the performance of HBA may vary slightly be-
tween runs. The quality of the initial population and the selected parameters (population
size, number of iterations, etc.) can influence the convergence speed and the quality of
the solutions. In the studied examples, HBA generally demonstrated stable and reliable
convergence, with minor variations observed across multiple runs.

To promote diversity during the search, random variables r; to r4 were sampled from a
uniform distribution in [0, 1]. The agents’ positions were iteratively updated based on the
two behavioral phases of the HBA: the digging phase and the honey phase. The simplified
adaptive mechanism, governed by the density factor «, a random directional flag F', and
a distance-based attraction term d, effectively guided the population toward feasible and
high-quality solutions while avoiding premature convergence.

Tables 1 and 2 summarize the comparative results of the HBA against those reported
in previous studies. In Case 1, the HBA obtained a best structural weight of 5490.73 1b
within 5,000 structural analyses, consistent with the best results reported by other meta-
heuristic approaches such as HHS [19], ABC [36], and SAR [33]. However, unlike these ap-
proaches which required over 20,000 structural evaluations to reach comparable solutions,
HBA achieved competitive efficiency, converging with significantly fewer computations in
the studied example. In comparison, other techniques such as HPSO [35] and GA [34]
produced slightly higher structural weights of 5531.8 lb and 5613.84 lb, respectively.

Table 1. Comparison of optimization results obtained using HBA with those from the literature for the
10-bar truss (Case 1).

Design Variables HPSO [35] ABC [36] GA [34] HHS [19] SAR [33] HBA

Ay 30.00 33.50 33.50 33.50 33.50 33.50
As 1.62 1.62 1.62 1.62 1.62 1.62
As 22.90 22.90 22.00 22.90 22.90 22.90
Ay 13.50 14.20 15.00 14.20 14.20 14.20
As 1.62 1.62 1.62 1.62 1.62 1.62
Ag 1.62 1.62 1.62 1.62 1.62 1.62
Az 7.97 7.97 14.20 7.97 7.97 7.97
As 26.50 22.90 19.90 22.90 22.90 22.90
Ag 22.00 22.00 19.90 22.00 22.00 22.00
Ao 1.80 1.62 2.62 1.62 1.62 1.62
Best weight (Ib) 9531.98 5490.74  5613.84  5490.74  5490.74  5490.74
No. of analyses 50000 25800 10000 5000 10000 2000




Table 2. Comparison of optimization results obtained using HBA with those from the literature for the
10-bar truss (Case 2).

Variables (in?)  Ringertz [37] HPSO [35] HHS [19] HBA

Ay 30.50 31.50 30.50 31.50
As 0.10 0.10 0.10 0.10
Az 23.00 24.50 24.00 23.00
Ay 15.50 15.50 14.00 15.00
As 0.10 0.10 0.10 0.10
Ag 0.50 0.50 0.50 0.50
Ay 7.50 7.50 7.50 7.50
Ag 21.00 20.50 21.50 20.50
Ag 21.50 20.50 21.50 21.50
Aqo 0.10 0.10 0.10 0.10
Best weight (1b) 5059.90 5073.51 5067.33  5070.41
No. of analyses N/A 50,000 5,000 5,000

In Case 2, the HBA demonstrated competitive performance compared to established
methods such as Ringertz [37], HHS [19], and HPSO [35]. The best weight obtained by
HBA was 5070.41 b, positioning it among the top designs between those produced by
HHS (5067.33 1b), HPSO (5073.51 1b), and Ringertz (5059.90 1b). Remarkably, HBA
required only 5,000 structural analyses to achieve this result, whereas HHS and HPSO
required approximately 5,000 and 50,000 evaluations, respectively.

Figures 3 and 4 illustrate the convergence behavior of the HBA across both case
studies, demonstrating rapid progression toward optimal solutions and efficient constraint
satisfaction.
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Figure 3. Evolution of convergence for the 10-bar truss structure (Case 1).
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Figure 4. Evolution of convergence for the 10-bar truss structure (Case 2).

The 15-bar plane truss structure

This optimization case study considers a 15-bar planar truss structure subjected to a
transverse load of P = 10 kip, as illustrated in Figure 5. The material properties are
defined by a density of p = 0.1 Ib/ in® and a Young’s modulus of E = 10* ksi.

The design problem includes 15 discrete variables corresponding to the cross-sectional
areas of the truss elements. The cross-sectional areas are selected from the following
discrete set in in%: L = {0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539,
0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805,
5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180 }.

The continuous design variables correspond to the coordinates zo—xg, x3—x7, and
Y2, Y3, Ya, Y6, Y7, Ys, and are subject to the following domain constraints: 100 < xo < 140,
220 < x3 < 260, 100 < yo < 140, 100 < y3 < 140, 50 < y4 < 90, =20 < ys < 20,
—20 < y; < 20, and 20 < yg < 60.

These bounds ensure geometric feasibility while allowing flexibility in the optimiza-
tion process. All truss members are constrained to a maximum allowable tensile stress
limitation of £25 ksi. To ensure an effective exploration and exploitation balance during
the optimization process, the population size is set to Nagent = 20. The HBA is executed
for a maximum of 6000 iterations. The dynamic exploration factor is computed at each
iteration according to the nonlinear decay formula a.

Figure 6 displays the convergence profile of the HBA when applied to the 15-bar
truss optimization problem. The algorithm demonstrates a rapid convergence trend, with
notable improvements observed between iterations 1900 and 2000, and stabilization oc-
curring around the 6000 iterations.

Tables 3 present a comparative summary between the optimal design obtained using
HBA and those reported by alternative optimization techniques in the literature. HBA
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achieved an optimal structural weight of 74.993 lb, outperforming several existing methods
under similar computational budgets. The structural weights reported by D-ICDE [38],
GA [41], and GA [40], were 80.5688 1b, 79.82 lb, and 76.685 b, respectively.
Additionally, the PSO variant [39] resulted in 82.2344 1b, while CPSO and SCPSO
achieved 77.6153 1b and 72.5143 1b, respectively. These findings highlight the potential
of HBA in handling discrete optimization problems with structural constraints. However,
as a stochastic algorithm, its performance may vary across different problem instances.

P 120 in i 120 in o 120 in o
/ 2 3) 3 4)
4 e
12 13 14 15
8 9 120 in
Y : (8 -Y-
Pz 7 ®) 5 ) 5
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Figure 5. A 15-bar truss structure in a planar configuration.
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Figure 6. Evolution of convergence for the 15-bar truss structure
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Table 3. Comparison of optimization results obtained using HBA with those from the literature for the
15-bar truss.

Design Variables GA [39] GA [40] PSO [41] CPSO [41] SCPSO [41] D-ICDE [38] HBA

Aq 1.081 1.081 0.954 1.174 0.954 1.081 0.954
As 0.539 0.539 1.081 0.539 0.539 0.539 0.539
A3 0.287 0.287 0.270 0.347 0.270 0.141 0.111
Ay 0.954 0.954 1.081 0.954 0.954 0.954 0.954
As 0.954 0.539 0.539 0.954 0.539 0.539 0.539
Ag 0.220 0.141 0.287 0.141 0.174 0.287 0.347
A7 0.111 0.111 0.141 0.141 0.111 0.111 0.111
Ag 0.111 0.111 0.111 0.111 0.111 0.111 0.111
Ag 0.287 0.539 0.347 0.174 0.287 0.141 3.565
Ao 0.220 0.440 0.440 0.141 0.347 0.347 0.440
A1l 0.440 0.539 0.270 0.440 0.347 0.440 0.440
A1z 0.440 0.270 0.111 0.440 0.220 0.270 0.174
A3 0.111 0.220 0.347 0.141 0.220 0.270 0.270
Ata 0.220 0.141 0.440 0.141 0.174 0.287 0.347
Ais 0.347 0.287 0.220 0.347 0.270 0.174 0.111
T2 133.612  101.577 106.052 102.287 137.221 100.039 116.006
3 234.752  227.911 239.024 240.505 259.909 238.701 229.352
Y2 100.449  134.798 130.355 112.584 123.500 132.847 134.202
Y3 104.738  128.221 114.273 108.042 110.002 125.366 121.041
Y4 73.762 54.863 51.987 57.795 59.935 60.307 46.986
Y6 10.067 16.448 1.814 -6.430 -5.180 -10.665 -19.350
Y7 1.339 13.301 9.183 -1.801 4.219 -12.248 -11.086
ys 50.402 54.857 46.909 57.799 57.883 59.993 46.964
Best weight (1b) 79.820 76.685 83.234 77.615 72.514 74.681 74.993
No. of analyses 8000 8000 4500 7980 7980 - 5000

The 25-bar spatial truss structure

Figure 7 presents the configuration of a spatial truss composed of 25 elements. This
benchmark problem has been widely used in the literature to evaluate the performance of
structural optimization algorithms. All truss members share common mechanical prop-
erties: a Young’s modulus of 10,000 ksi and a material density of 0.1 1b/ in®. The loading
conditions applied to the structure are detailed in Table 4.

Due to the structural symmetry, the 25 bars are grouped into eight design categories to
reduce the number of independent design variables. These groups are defined as follows:
Group 1 contains Al; Group 2 includes A2 to A5; Group 3 includes A6 to A9; Group 4
includes A10 and A11l; Group 5 includes A12 and A13; Group 6 includes Al4 to Al7,
Group 7 includes A18 to A21; and Group 8 includes A22 to A25.

This grouping simplifies the optimization problem while preserving the mechanical
behavior and constraints of the spatial structure. All free nodes are constrained to dis-
placement limits of 435 in in all directions, and each bar group must satisfy an allowable
axial stress constraint of 440 ksi. The discrete set of admissible cross-sectional areas is L
={0.1, 0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4 } in? .

Table 4. Loading conditions for the 25-bar truss problem.

Node X (kips) Y (kips) Z (kips)

1 1.0 10.0 -5.0
2 0.0 10.0 -9.0
3 0.5 0.0 0.0
6 0.5 0.0 0.0
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Figure 7. A 25-bar truss structure in a spatial configuration.

The optimization performance of various algorithms for the 25-bar spatial truss struc-
ture is outlined in Table 5. The HBA was benchmarked against seven established meta-
heuristic techniques, including Colliding Bodies Optimization (CBO) [42], Ant Colony
Optimization (ACO) [20], Big Bang-Big crunch (BB-BC)[43], Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [44], Harmony Search-based HHS [19], and Hybrid
PSO (HPSO) [35]. Among them, HBA produced the lightest optimal weight of 482.49 Ib,
surpassing all the alternatives, which converged to a weight of 484.85 lb. Notably, HBA
achieved this result after just 1000 structural analyses, whereas competing methods re-
quired significantly more computational effort such as 25,000 evaluations for HPSO, 9090
for BB-BC, and 5000 for both HHS and CMA-ES.

Figure 8 shows the convergence profile of the HBA applied to the 3D truss optimization
problem. The algorithm was executed with a population size of N = 30 and a maximum of
1000 iterations. The adaptive density factor a was computed using a nonlinear Gaussian
decay function, while the movement of each agent was guided by a randomized directional
flag F' € [—1,1] and a stochastic attraction term d, where 8 ~ U(0,1). The search
alternated between the digging and honey phases. Over the course of optimization, HBA
effectively improved the structure, demonstrating robustness and efficiency for solving
high-dimensional, constraint-based structural problems.
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Figure 8. Evolution of convergence for the 25-bar truss structure

Table 5. Comparison of optimization results obtained using HBA with those from the literature for the
25-bar truss.

Group CBO [42] ACO [20] ABC [36] HPSO [35] BB-BC [43] HHS [19] CMA-ES [44] HBA
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.7

3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.0

6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9

7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3

8 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
Best Weight (lb) 484.85 484.85 484.85 484.85 484.85 484.85 484.85 482.49
No. of analyses 20000 - 24250 25000 9090 5000 5000 1000

Conclusions

In this work, the Honey Badger Algorithm (HBA) was employed to address the structural
optimization of both planar and spatial truss systems. The algorithm was implemented in
Python, incorporating a penalty-based mechanism to effectively handle design constraints.
This dynamic constraint handling approach ensures the feasibility of candidate solutions
while maintaining optimization efficiency. Experimental evaluations on various truss con-
figurations subjected to different loading conditions demonstrated the algorithm’s ability
to deliver accurate and robust solutions. A key strength of HBA lies in its bio-inspired
search mechanism, which adaptively balances global exploration and local exploitation
through its two main strategies: the digging and honey phases. Furthermore, HBA is a
derivative-free algorithm, making it particularly suitable for structural problems where
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gradient information is difficult or costly to obtain. Although this approach requires a con-
siderable number of structural analyses, it remains advantageous for problems involving
discrete variables or nonlinear constraints, where gradient-based methods are impractical
or unreliable. While its convergence speed may vary depending on problem complexity, its
robustness, simplicity, and constraint-handling effectiveness make HBA a promising tool
for structural optimization tasks. It should be noted that the performance of HBA also
depends on several algorithmic parameters, including population size, quality of the initial
population, number of optimization runs, number of iterations per run, and penalty pa-
rameters. These choices can significantly influence convergence speed and solution quality,
and should be carefully selected based on the specific problem considered.
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