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Phase field method for brittle fracture 

implemented with polygonal finite elements 
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Summary  The aim of this article is to model fracture propagation in brittle materials, such as 
rocks and concrete, with the phase field approach. The hybrid formulation of the phase field 
theory is adopted because it enables using an ad-hoc, or a problem specific, crack driving force, 
here of Mohr–Coulomb type, to correctly model brittle materials under compression or shear. 
Hybrid formulations are variationally inconsistent because the crack driving force is not the same 
as the one used in the underlying energy functional. They are, however, thermodynamically 
consistent, and computationally cheap since they allow to use a linear balance of momentum 
equation within the robust staggered scheme to solve the coupled system for the phase field and 
the displacement field. The phase field method is implemented with 2D polygonal finite elements 
based on the Wachspress interpolation functions. As numerical examples, typical test cases of 
notched samples under mode I and II loadings are simulated. Finally, a slope stability problem is 
solved as an engineering application.    
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Introduction 

Phase field method has become an extremely popular approach to model fracture in 

computational mechanics during the last two decades, see e.g. [1–12]. Its attraction stems 

from the ability to simulate crack initiation, propagation, and branching without the need 

for ad-hoc criteria. Moreover, with this method, cracks are tracked automatically by the 

propagation of a smooth crack field on a fixed mesh. However, the major shortcoming is 

the computational labour due to dense meshes required to reach reasonable accuracy. In 

addition, it is challenging to find a suitable crack, or phase field, driving force for 

compressive/shear fractures, especially for brittle materials under uniaxial compression 
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[7,8]. An ad-hoc choice of a crack driving force and its split into volumetric and deviatoric 

components (in order to separate model behavior in compression and tension) suitable for 

modelling shear banding in geomaterials leads to a hybrid formulation, which is 

variationally inconsistent. Variational inconsistency here means that the crack driving 

force is not the same as the one used in the underlying energy functional from which the 

expressions for the stress and the elasticity tensor are derived [11,12]. However, these 

formulations are usually thermodynamically consistent [11,12]. For a review on the 

historical developments of the method, see [12]. 

Polygonal finite elements have also attracted considerable attention in computational 

mechanics during last couple of decades [13–16]. Compared to traditional triangular and 

rectangular elements (in 2D), the perform better in meshing arbitrary geometries, describe 

better the grain texture of some materials (e.g. rocks), and have less locking-prone 

behavior under volume-preserving deformation [13]. However, the main drawback is the 

much more involved numerical integration [14] because the interpolation functions are, 

e.g., rational functions [17].  

In the present work, we implement the phase field method with polygonal finite 

elements based on the Wachspress interpolation functions [17]. The aim is to model 

fracture propagation in brittle materials, such as rocks and concrete. For this reason, the 

hybrid formulation of the phase field theory is adopted. Moreover, this formulation is 

computationally cheap since it allows to use a linear balance of momentum equation 

within the robust staggered scheme to solve the coupled system for the phase field and 

the displacement field. The novelty of the present model is in the judicious combination 

of the polygonal finite elements and the phase field fracture model for brittle materials 

with a Mohr–Coulomb and Rankine criteria type of fracture driving forces. There is a 

previous paper by Li and Cui [18] combining the polygonal finite elements and the phase 

field model for fracture, but it is based on the typical positive-negative parts split of the 

strain tensor and is thus not suitable for shear failure in brittle materials. As numerical 

examples, typical benchmark problems of notched samples under mode I and II loadings 

are solved. Finally, a slope stability problem is solved as an engineering application. 

Phase field model for brittle fracture 

Standard variationally consistent formulation 

In the phase field method for fracture, an internal discontinuity Γ𝜙 in an elastic body Ω 

(see Figure 1) is represented by a smooth phase field variable 𝜙 over a finite width 𝑙𝑐, 

called a length scale. The phase field variable, akin to the damage variable, ranges from 

0, for an intact material, to 1 for a fully cracked material. The governing equations of this 

problem are derived by a variational approach [4,11]. Consider the regularized energy 

functional for the fractured body originally presented by Bourdin et al. [18]:  

 

𝐿 = ∫ 𝜓𝜀(𝛆, 𝜙)𝑑Ω
Ω

+ ∫ 𝐺𝑐𝛾(𝜙, ∇𝜙)𝑑Ω
Ω

− ∫ 𝐛 ∙ 𝐮
Ω

𝑑Ω − ∫ 𝐭 ∙ 𝐮
∂Ω𝑡

𝑑S (1) 

𝜓𝜀(𝛆, 𝜙) = 𝑔(𝜙)𝜓0(𝛆) = ((1 − 𝜙)2 + 𝑘)(𝜆

2
tr(𝛆)2 + 𝜇tr(𝛆2)) (2) 
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where 𝛆 is the strain tensor, 𝜓0 is the elastic strain energy defined with the Lame constants 

𝜆, 𝜇. Moreover, 𝐺𝑐 is the critical energy release rate, 𝐛 is a body force (gravity here), 𝐭 is 

the prescribed traction, 𝐮 is the displacement vector, and k is a small numerical parameter 

to avoid singularities upon solving the equations. Furthermore, 𝑔(𝜙) is the typically 

applied quadratic degradation function. Finally, the regularization term, i.e., the crack 

surface density function, reads  

 

𝛾(𝜙, ∇𝜙) =
1

2𝑙𝑐
𝜙2 +

𝑙𝑐

2
|∇𝜙|2.   (3) 

The governing equations can now be derived with the standard steps requiring that the 

first variation of the functional 𝐿 disappears, i.e., 𝛿𝐿 = 0, which leads following system 

of model equations: 

 

∇ ∙ 𝛔 + 𝐛 = 𝟎  (4) 

𝐺𝑐𝑙𝑐∇2𝜙 −
𝐺𝑐

𝑙𝑐
𝜙 + 2(1 − 𝜙)𝐻𝑝 = 0  (5) 

𝛔 =  𝑔(𝜙)
𝜕𝜓0

𝜕𝛆
= ((1 − 𝜙)2 + 𝑘)[𝜆tr(𝛆)𝐈 + 2𝜇𝛆] (6) 

𝐃𝑒𝜙 = 𝑔(𝜙)
𝜕2𝜓0

𝜕𝜺𝟐 = ((1 − 𝜙)2 + 𝑘)𝐃𝑒  (7) 

 

where the symbol meaning are: 𝐃𝑒 is the standard elasticity tensor; I is the second order 

unit tensor and 𝐻𝑝 = max (𝜓0) is the maximum positive strain energy during the strain 

history, and it prevents healing of the crack. Equation (6) defines the stress tensor, while 

Equation (4) is the standard balance of linear momentum, and Equation (5) governs the 

evolution of the phased field damage 𝜙. In order to solve this system, boundary conditions 

need to be specified: 𝛔 ∙ 𝐧 = 𝐭 ̅and 𝐮 = 𝐮̅ on relevant parts of the boundary (see Figure 

1) and ∇𝜙 ∙ 𝐧 = 0 on Γ𝜙. This is the standard variationally consistent formulation for 

linear elastic isotropic solids with isotropic stress degradation.  

 

Figure 1. Schematic illustration of a body with a crack represented by a smooth phase field with 

a finite width. 

Present hybrid formulation 

The crack driving force in the standard formulation above is the isotropic elastic energy, 

which cannot predict correct failure modes in shear dominated applications. For this 

reason, hybrid formulations have been proposed where ad-hoc crack driving forces are 

chosen for specific applications and materials, as discussed in Introduction above. The 
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present formulation is inspired by Refs. [7] and [11]. In the previous study by Zhou et al., 

a Mohr–Coulomb type of crack driving force is employed in modelling shear fracture in 

rock-like materials. The latter work by Zhang et al., likewise on rock-like materials, splits 

the crack driving force into two components, 𝐻 = 𝐻𝐼 + 𝐻𝐼𝐼, where the components are 

based on the volumetric and deviatoric split of the elastic energy. The present hybrid 

formulation similarly employs the concept of splitting the crack driving force into 

separate components for tensile and compressive failures. However, instead of positive-

negative or volumetric-deviatoric parts decompositions, the Rankine and Mohr–Coulomb 

criteria type of crack driving forces are chosen. This requires a modification of the phase 

field evolution equation so that the model now becomes: 

 

𝑙𝑐∇2𝜙 −
1

𝑙𝑐
𝜙 + 2(1 − 𝜙) (

𝐻𝑡

𝐺𝐼𝑐
+

𝐻𝑠

𝐺𝐼𝐼𝑐
) = 0  (8) 

𝐻𝑡 = max
𝜏∈[0,𝑡]

1

2𝐸
⟨√⟨𝜎1⟩+

2 + ⟨𝜎2⟩+
2 − 𝜎𝑡⟩

+

2

  (9) 

𝐻𝑠 = max
𝜏∈[0,𝑡]

1

2𝜇
〈〈−𝜎1〉 − 〈−𝜎3〉 + (〈−𝜎1〉 + 〈−𝜎3〉) sin(𝜑) − 2𝑐0cos (𝜑)〉2 (10) 

 

where 𝜎𝑖 is the ith principal stress, 𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 are mode I and II fracture energies, 𝜎𝑡 is 

the tensile strength, and 𝜑 and 𝑐0 are the internal friction and the cohesion of the material. 

Moreover, Macaulay brackets (the positive part operator) have been used. It can be 

observed that the expression in Equation (9) inside the Macaulay brackets is the rounded 

Rankine criterion while the one in Equation (9) is the Mohr–Coulomb criterion.  

Due to the stress-based crack driving forces (9) and (10), the mechanical part is kept 

unaltered so that Equation (6) and (7) are still valid. This means that the present approach 

is isotropic in that the elastic energy is not split, e.g., into volumetric and deviatoric 

components (see [7] for more info).  

 

Finite element form of the equations and their solution 

The finite elements versions of the Equation (4) and (5) are derived by standard steps 

using the principle of virtual work. Following Miehe et al. [4] and Navidtehrani et al. [6], 

the governing equations are solved with the staggered scheme. Applying the Newton–

Raphson method for the subsystems, the resulting equations for solving the displacement 

u and phase field 𝛟 are written as: 

 

[
𝐊𝑢

𝑛 𝟎

𝟎 𝐊𝜙
𝑛 ] (

𝐮𝑛+1

𝛟𝑛+1
) = − (

𝐑𝑢
𝑛

𝐑𝜙
𝑛 )  (11) 

where 

𝐊𝑢 = 𝐀𝑒=1
𝑁𝑒 ∫ ((1 − 𝜙)2 + 𝑘)

Ω
𝐁𝑢𝑒

𝑇 𝐃𝑒𝐁𝑢𝑒𝑑Ω    (12) 

𝐑𝑢 = 𝐀𝑒=1
𝑁𝑒 (∫ ((1 − 𝜙)2 + 𝑘)𝐁𝑢𝑒

𝑇 𝛔
Ω

𝑑Ω − ∫ 𝐍𝑢𝑒
𝑇 𝐛

Ω
𝑑Ω − ∫ 𝐍𝑢𝑒

𝑇 𝐭
∂Ω𝑡

𝑑S) (13) 

𝐊𝜙 = 𝐀𝑒=1
𝑁𝑒 ∫ (𝑙𝑐𝐁𝜙𝑒

𝑇 𝐁𝜙𝑒 + ( 1
𝑙𝑐

+
2𝐻𝑡
𝐺𝐼𝑐

+
2𝐻𝑠
𝐺𝐼𝐼𝑐

)𝐍𝜙𝑒
𝑇 𝐍𝜙𝑒) 𝑑Ω

Ω
 (14) 
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𝐑𝜙 = 𝐀𝑒=1
𝑁𝑒 (∫ (

1

𝑙𝑐
𝜙 − 2(1 − 𝜙) (

𝐻𝑡

𝐺𝐼𝑐
+

𝐻𝑠

𝐺𝐼𝐼𝑐
)) 𝐍𝜙𝑒

𝑇
Ω

+ 𝑙𝑐𝐁𝜙𝑒
𝑇 ∇𝜙)𝑑Ω (15) 

 

The notations here are: 𝐊𝑢 and 𝐊𝜙 are the stiffness matrices for displacement and phase 

field equations, respectively; 𝐑𝑢 and 𝐑𝜙 are the residual vectors for displacement and 

phase field equations, respectively; 𝐀 is the standard finite element assembly operator; 

𝐁𝑢𝑒 and 𝐁𝜙𝑒 are the gradient operators for displacement and phase field (𝛆 =
𝐁𝑢𝑒𝐮𝑒 , ∇𝜙 = 𝐁𝜙𝑒𝛟), respectively; 𝐍𝑢𝑒 and 𝐍𝜙𝑒 are the interpolation matrices for 

displacement and phase field variables, respectively. The interpolation mappings are 

standard, i.e., 𝐮 = 𝐍𝑢𝑒𝐮𝑒 , 𝜙 = 𝐍𝜙𝑒𝛟𝑒 with 𝐮𝑒 and 𝛟𝑒 being the nodal displacement and 

phase field vectors, respectively, for element e. It should be noted that the solution of 

Equation (11) is fast and robust due to the isotropic form of the stiffness matrix (12).  

Polygonal element based on Wachspress interpolation 

The implementation of Talischi et al. [16] of the polygonal finite element method based 

on Wachspress interpolation functions is chosen. It exploits the standard isoparametric 

mapping from a reference element to the physical element, as illustrated in Figure 2. 

Mathematically, a Wachspress type of barycentric interpolant at node i of a reference n-

gon reads 

 

𝑁𝑖(𝝃) =
𝛼𝑖(𝝃)

∑𝑗=1
𝑛 𝛼𝑗(𝝃)

,  𝛼𝑖(𝝃) =
𝐴(𝒑𝑖−1,𝒑𝑖,𝒑𝑖+1)

𝐴(𝒑𝑖−1,𝒑𝑖,𝝃)𝐴(𝒑𝑖,𝒑𝑖+1,𝝃)
 (16) 

 

where A(a, b, c) denotes the signed area of triangle a, b, c (Figure 2a). The numerical 

integration is carried out by sub-dividing the reference polygon into triangles and using a 

three-point Hammer integration scheme for each triangle (resulting 3n integration points 

for each n-gon), as illustrated in Figure 2b. 

The polygonal element mesh is generated by the open source PolyMesher Matlab 

code by Talischi et al. [15]. This code generates 2D Voronoi diagrams (tessellations) 

consisting of centroidal (or alternatively non-centroidal) Voronoi cells.  

 

Figure 2. Polygonal element: Triangular areas used in the definition of Wachspress shape function 

(a); Triangulation of the reference regular polygon with three integration points in each triangle, 

and the isoparametric mapping to a physical element (b). 
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Numerical examples 

A representative set of typical benchmark problems are solved here with the present phase 

field formulation. Moreover, a mesh sensitivity study, guiding the mesh design in each 

problem, is performed in Appendix A. All simulations are performed with a self-written 

Matlab code. 

 

Single edge notched tests 

This test is a benchmark case used extensively in the phase field for fracture literature. 

The geometry and the boundary conditions for the two cases tested here are shown in 

Figure 3a. The computations are carried out by controlling the displacement vertically in 

LC1 and horizontally in LC2. In the latter case, the vertical displacement of the nodes in 

the mesh (shown in Figure 3b) is also restricted. The material properties and model 

parameters are as follows: E = 210 GPa;  = 0.3; t = 2445.42 MPa; GIc = 2700 J/m2; lc = 

0.0075 mm.   

The predicted crack path in LC1, shown in Figure 3c, is as expected, i.e., the crack 

initiates at the tip of the pre-notch and propagates straight through the sample 

horizontally. In LC2, the crack propagates downwards with a curvy trajectory and, due to 

the shear nature of the loading and the restricted vertical degrees of freedom, reaches the 

bottom edge first and then the right vertical edge. In both cases the predicted cracks agree 

to those found in the literature, see e.g. [9].     

 

Figure 3. Simulation results for single edge notched tests: Test geometry and load cases (a); 

Polygonal finite element mesh with 15000 polygons (b); A magnified detail at the edge of the 

pre-notch (c); the predicted crack patterns in terms of the phase field variable (d). 
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Mixed mode I or mode II crack propagation in a pre-notched PMMA 

specimen 

This test is used, e.g., by Pham et al. [10] to validate their phase-field model. The PMMA 

specimen (dimensions in mm) is shown in Figure 4a. In the experimental setting, a sharp 

crack, of 13.47 mm long in the present case, is created by impacting a razor blade against 

the tip of 4 mm wide and 22.86 mm long pre-notch. The specimen is similar to the 

standard compact test specimen except the extra hole (10 mm of diameter), which disrupts 

the symmetric stress field so that the crack path proceeds curvilinearly, reaching the extra 

hole as illustrated in Figure 4a (the red dotted line after [10]). Loading is imposed at 

constant velocity at points A and B at rate 4E-4 mm/s. The thickness of the sample is 3 

mm. The material properties and model parameters are: E = 2.98 GPa;  = 0.35; t = 50 

MPa; GIc = 285 J/m2; lc = 0.5E–3 m. The polygonal mesh with only 5000 elements is 

shown in Figure 4b. The relatively economic mesh is due to a refinement (requires 

modifications to the PolyMesher code) around the expected crack path. Moreover, the 

sharp pre-crack is here modelled as a topological entity with a width of 0.33 mm. The 

element size at the crack tips is about 0.27 mm. Alternatively, it could be modelled as a 

boundary condition for the phase field, i.e., the phase field variable having value 1 at the 

mesh nodes on both sides of the crack. However, this method also requires tailoring the 

mesh details [10]. The predicted crack path agrees with the experimental one quite well, 

as observed in Figure 4d.  

 

Figure 4. Simulation results for the pre-notched PMMA specimen: Test geometry and load cases 

(a); Polygonal finite element mesh with 5000 polygons (b); Deformed mesh with magnification 

(c); the predicted crack pattern compared to the experimental one (after [10]) (d). 
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Engineering problem: Slope stability under self-weight 

A geotechnical engineering problem of slope stability under self-weight is solved as the 

final numerical example.  More specifically, the problem concerns a homogenous 2D soil 

slope with critical dimensions so that instability occurs with the unit weight 𝛾 = 20 kN/m3, 

cohesion c0 = 12.38 kPa and the friction angle  = 20. The Young’s modulus and 

Poisson’s ratio are 10 MPa and 0.4, respectively. The phase field model parameters are: 

GIIc = 200 N/m and lc = 0.15 m. The polygonal element mesh with 15000 elements and 

the boundary conditions are shown in Figure 5a. The element size is  100 mm.  The 

loading is applied gradually so that  = 20 kN/m3 n/100 for n < 100, and  = 20 kN/m3 

for n  100. The red dashed line in Figure 5a sketches the theoretical and experimental 

toe failure mode. 

The predicted failure type is the toe failure, i.e., the instability failure initiates at the 

toe of the slope and propagates towards to the top of the slope. However, the failure band 

does not reach the top edge of the slope but deviates towards the right edge of the meshed 

domain, as can be observed in Figure 5c. Nevertheless, this prediction agrees with that by 

Wang et al. [8] using also the phase field approach. It is important to emphasize that this 

is not a problem related to the Mohr–Coulomb criterion because it can predict the correct 

failure band (reaching the top edge) when used as a yield criterion in a plasticity model, 

as demonstrated by Xiang & Zi-Hang [19]. The problem thus seems to be in the present 

phase field formulation itself. 

 

Figure 5. Simulation results for the problem of slope stability under self-weight: Model geometry 

and the boundary conditions shown with the polygonal mesh (15000 polygons) (a); the predicted 

failure mode at loading step n = 150 (b) and at n = 150 (c). 
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Conclusions 

A phase field model for brittle fracture was implemented with polygonal finite elements 

based on the Wachspress rational interpolants. The phase field model was formulated as 

a hybrid, i.e., the elastic energy used in the variational formulation does not drive the 

fracture (the phase field evolution). Instead, the fracture is driven by separate, stress-based 

crack driving forces, of the Rankine and Mohr–Coulomb type, respectively, for tensile 

and compressive failures. However, the elastic energy is employed, in its isotropic form, 

to calculate stress and material stiffness (elasticity tensor). Within the staggered solution 

strategy for the coupled system, it follows from this feature that the tangent stiffness 

operator remains linear and therefore its solution is fast and robust.  

The main drawback of the present hybrid-isotropic formulation is that it ignores the 

unilateral effects of damage in tension and compression and is thus not suitable for cyclic 

loadings. Moreover, the polygonal elements are computationally more intensive than the 

traditional finite elements due to the rational interpolants. The present combination was 

also found to be somewhat mesh sensitive. Nevertheless, the present method was 

successfully applied to some benchmark problems in the phase field literature, and it 

performed very well. However, the phase field method, at least the present formulation, 

fails partially to predict the correct failure mode in a slope stability problem under self-

weight. The method predicts the correct failure initiation at the toe of the slope, but it does 

not reach the top of the slope. This issue should be studied more in future. Finally, a study 

comparing the performance of the traditional finite elements and the polygonal ones in 

modelling crack propagation in brittle materials with the phase field approach is needed. 
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Appendix A 

A mesh sensitivity study is performed here with the pre-notched PMMA specimen, 

however, removing the sharp crack because the meshing algorithm by Talischi et al. [15] 

cannot handle such a fine detail successfully. The boundary conditions and the material 

properties are the same as those used above. However, the length scale parameter is 

adjusted according to the element size in the meshes shown in Figure 6 so that lc = 2 mm, 

lc = 1.5 mm, and lc = 1 mm for meshes with 2000, 4000, and 8000 elements, respectively.   

 

Figure 6. The polygonal meshes with 2000, 4000, and 8000 polygons for the mesh sensitivity 

study with the pre-notched tension specimen. 

The simulation results are shown in Figure 7. The crack path starts at the tip of the notch 

and propagates to the edge of the extra hole with each mesh, albeit with differing details 

(Figure 7a). The corresponding force-crack opening displacement (COD) curves in 

Figure 7b show that the mesh with 2000 elements is too coarse while the two denser 

meshes result in much more similar force-COD responses. This, together with the crack 

path details, suggest that the finest mesh here is enough for this problem. In any case, the 

simulations here show that the present formulation of the phase field method with 

polygonal elements is mesh sensitive. 
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Figure 7. Simulation results for the mesh sensitivity study with the pre-notched tension specimen: 

The predicted failure modes in terms of the phase field variable (a); The corresponding force-

crack opening responses (b). 


