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Phase field method for brittle fracture
implemented with polygonal finite elements
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Summary The aim of this article is to model fracture propagation in brittle materials, such as
rocks and concrete, with the phase field approach. The hybrid formulation of the phase field
theory is adopted because it enables using an ad-hoc, or a problem specific, crack driving force,
here of Mohr—Coulomb type, to correctly model brittle materials under compression or shear.
Hybrid formulations are variationally inconsistent because the crack driving force is not the same
as the one used in the underlying energy functional. They are, however, thermodynamically
consistent, and computationally cheap since they allow to use a linear balance of momentum
equation within the robust staggered scheme to solve the coupled system for the phase field and
the displacement field. The phase field method is implemented with 2D polygonal finite elements
based on the Wachspress interpolation functions. As numerical examples, typical test cases of
notched samples under mode | and 1l loadings are simulated. Finally, a slope stability problem is
solved as an engineering application.
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Introduction

Phase field method has become an extremely popular approach to model fracture in
computational mechanics during the last two decades, see e.g. [1-12]. Its attraction stems
from the ability to simulate crack initiation, propagation, and branching without the need
for ad-hoc criteria. Moreover, with this method, cracks are tracked automatically by the
propagation of a smooth crack field on a fixed mesh. However, the major shortcoming is
the computational labour due to dense meshes required to reach reasonable accuracy. In
addition, it is challenging to find a suitable crack, or phase field, driving force for
compressive/shear fractures, especially for brittle materials under uniaxial compression
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[7,8]. An ad-hoc choice of a crack driving force and its split into volumetric and deviatoric
components (in order to separate model behavior in compression and tension) suitable for
modelling shear banding in geomaterials leads to a hybrid formulation, which is
variationally inconsistent. Variational inconsistency here means that the crack driving
force is not the same as the one used in the underlying energy functional from which the
expressions for the stress and the elasticity tensor are derived [11,12]. However, these
formulations are usually thermodynamically consistent [11,12]. For a review on the
historical developments of the method, see [12].

Polygonal finite elements have also attracted considerable attention in computational
mechanics during last couple of decades [13-16]. Compared to traditional triangular and
rectangular elements (in 2D), the perform better in meshing arbitrary geometries, describe
better the grain texture of some materials (e.g. rocks), and have less locking-prone
behavior under volume-preserving deformation [13]. However, the main drawback is the
much more involved numerical integration [14] because the interpolation functions are,
e.g., rational functions [17].

In the present work, we implement the phase field method with polygonal finite
elements based on the Wachspress interpolation functions [17]. The aim is to model
fracture propagation in brittle materials, such as rocks and concrete. For this reason, the
hybrid formulation of the phase field theory is adopted. Moreover, this formulation is
computationally cheap since it allows to use a linear balance of momentum equation
within the robust staggered scheme to solve the coupled system for the phase field and
the displacement field. The novelty of the present model is in the judicious combination
of the polygonal finite elements and the phase field fracture model for brittle materials
with a Mohr—Coulomb and Rankine criteria type of fracture driving forces. There is a
previous paper by Li and Cui [18] combining the polygonal finite elements and the phase
field model for fracture, but it is based on the typical positive-negative parts split of the
strain tensor and is thus not suitable for shear failure in brittle materials. As numerical
examples, typical benchmark problems of notched samples under mode I and 11 loadings
are solved. Finally, a slope stability problem is solved as an engineering application.

Phase field model for brittle fracture

Standard variationally consistent formulation

In the phase field method for fracture, an internal discontinuity ' in an elastic body Q
(see Figure 1) is represented by a smooth phase field variable ¢ over a finite width [,
called a length scale. The phase field variable, akin to the damage variable, ranges from
0, for an intact material, to 1 for a fully cracked material. The governing equations of this
problem are derived by a variational approach [4,11]. Consider the regularized energy
functional for the fractured body originally presented by Bourdin et al. [18]:

L= [y Ye(e.)dQ+ [, Gy($,V)dQ— [, b-udQ— [, t-uds )
Ve(e, @) = g()ho(e) = (1 — ¢)* + k) (Gtr(e)? + utr(e?)) (2)
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where € is the strain tensor, 1, is the elastic strain energy defined with the Lame constants
A, u. Moreover, G, is the critical energy release rate, b is a body force (gravity here), t is
the prescribed traction, u is the displacement vector, and k is a small numerical parameter
to avoid singularities upon solving the equations. Furthermore, g(¢) is the typically
applied quadratic degradation function. Finally, the regularization term, i.e., the crack
surface density function, reads

Y(,V9) = - 97 +51V9I% ®3)

The governing equations can now be derived with the standard steps requiring that the
first variation of the functional L disappears, i.e., L = 0, which leads following system
of model equations:

V-e+b=0 4)
Gelc V2 — 22+ 2(1 — $)H, = 0 (5)
o= g($) 22 = (1 - ¢)? + k) [Atr()1 + 2pe] (6)
Dey = 9(@) 2L = (1 - $)? + D, )

where the symbol meaning are: D, is the standard elasticity tensor; I is the second order
unit tensor and H,, = max () is the maximum positive strain energy during the strain
history, and it prevents healing of the crack. Equation (6) defines the stress tensor, while
Equation (4) is the standard balance of linear momentum, and Equation (5) governs the
evolution of the phased field damage ¢. In order to solve this system, boundary conditions
need to be specified: o - n = t and u = 1 on relevant parts of the boundary (see Figure
1) and V¢ -n = 0 on I. This is the standard variationally consistent formulation for
linear elastic isotropic solids with isotropic stress degradation.

o0,
=1
60, '
O
=0

Figure 1. Schematic illustration of a body with a crack represented by a smooth phase field with
a finite width.

Present hybrid formulation

The crack driving force in the standard formulation above is the isotropic elastic energy,
which cannot predict correct failure modes in shear dominated applications. For this
reason, hybrid formulations have been proposed where ad-hoc crack driving forces are
chosen for specific applications and materials, as discussed in Introduction above. The
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present formulation is inspired by Refs. [7] and [11]. In the previous study by Zhou et al.,
a Mohr—Coulomb type of crack driving force is employed in modelling shear fracture in
rock-like materials. The latter work by Zhang et al., likewise on rock-like materials, splits
the crack driving force into two components, H = H; + H;;, where the components are
based on the volumetric and deviatoric split of the elastic energy. The present hybrid
formulation similarly employs the concept of splitting the crack driving force into
separate components for tensile and compressive failures. However, instead of positive-
negative or volumetric-deviatoric parts decompositions, the Rankine and Mohr—Coulomb
criteria type of crack driving forces are chosen. This requires a modification of the phase
field evolution equation so that the model now becomes:

LV~ p+2(1-9) (7 +55) =0 ®)
H, = Tlél[glPt(]—(v (01)% +(02)3 — 0't>+ ©)
Hy = max = (~01) = (~03) + (=) + (~03)) sin(p) — 2coc05 (¢))’ (10)

where g; is the ith principal stress, G,. and G;;. are mode | and Il fracture energies, o; is
the tensile strength, and ¢ and ¢, are the internal friction and the cohesion of the material.
Moreover, Macaulay brackets (the positive part operator) have been used. It can be
observed that the expression in Equation (9) inside the Macaulay brackets is the rounded
Rankine criterion while the one in Equation (9) is the Mohr—Coulomb criterion.

Due to the stress-based crack driving forces (9) and (10), the mechanical part is kept
unaltered so that Equation (6) and (7) are still valid. This means that the present approach
is isotropic in that the elastic energy is not split, e.g., into volumetric and deviatoric
components (see [7] for more info).

Finite element form of the equations and their solution

The finite elements versions of the Equation (4) and (5) are derived by standard steps
using the principle of virtual work. Following Miehe et al. [4] and Navidtehrani et al. [6],
the governing equations are solved with the staggered scheme. Applying the Newton—
Raphson method for the subsystems, the resulting equations for solving the displacement
u and phase field ¢ are written as:

. n
ol =-(xi) (1)

where

Ky, = Ay2, [, (1 — $)? + k) B[.DB,.dQ (12)

R, = Ag%, (J, (1= ¢)? + k)BL.od — [, NI,bdQ - [, NitdS) (13)

Ky =A%, f, (1BfeBge + (A2 21)NE Ny, ) ) (14)
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Ry = A2, (f, (icp —201-¢) (c-+ )) NG, + 1B}, Vp)dQ (15)

Gie  Giie

The notations here are: K, and K are the stiffness matrices for displacement and phase
field equations, respectively; R, and Ry, are the residual vectors for displacement and
phase field equations, respectively; A is the standard finite element assembly operator;
B,. and By, are the gradient operators for displacement and phase field (e =
Bycue, Vo = By ), respectively; Ny, and Ny, are the interpolation matrices for
displacement and phase field variables, respectively. The interpolation mappings are
standard, i.e., u = Nyu,, ¢ = Ng.P. withu, and ¢, being the nodal displacement and
phase field vectors, respectively, for element e. It should be noted that the solution of
Equation (11) is fast and robust due to the isotropic form of the stiffness matrix (12).

Polygonal element based on Wachspress interpolation

The implementation of Talischi et al. [16] of the polygonal finite element method based
on Wachspress interpolation functions is chosen. It exploits the standard isoparametric
mapping from a reference element to the physical element, as illustrated in Figure 2.
Mathematically, a Wachspress type of barycentric interpolant at node i of a reference n-
gon reads

i) A@i-1.PiPi+1)
i(§) Yi=12j (@) @i($) APi-1Pi)ADPi+1.5) (16)

where A(a, b, ¢) denotes the signed area of triangle a, b, ¢ (Figure 2a). The numerical
integration is carried out by sub-dividing the reference polygon into triangles and using a
three-point Hammer integration scheme for each triangle (resulting 3n integration points
for each n-gon), as illustrated in Figure 2b.

The polygonal element mesh is generated by the open source PolyMesher Matlab
code by Talischi et al. [15]. This code generates 2D Voronoi diagrams (tessellations)
consisting of centroidal (or alternatively non-centroidal) VVoronoi cells.

52 Isoparametric mapping

Figure 2. Polygonal element: Triangular areas used in the definition of Wachspress shape function
(a); Triangulation of the reference regular polygon with three integration points in each triangle,
and the isoparametric mapping to a physical element (b).
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Numerical examples

A representative set of typical benchmark problems are solved here with the present phase
field formulation. Moreover, a mesh sensitivity study, guiding the mesh design in each
problem, is performed in Appendix A. All simulations are performed with a self-written
Matlab code.

Single edge notched tests

This test is a benchmark case used extensively in the phase field for fracture literature.
The geometry and the boundary conditions for the two cases tested here are shown in
Figure 3a. The computations are carried out by controlling the displacement vertically in
LC1 and horizontally in LC2. In the latter case, the vertical displacement of the nodes in
the mesh (shown in Figure 3b) is also restricted. The material properties and model
parameters are as follows: E = 210 GPa; v = 0.3; ot = 2445.42 MPa; Gic = 2700 J/m?; I =
0.0075 mm.

The predicted crack path in LC1, shown in Figure 3c, is as expected, i.e., the crack
initiates at the tip of the pre-notch and propagates straight through the sample
horizontally. In LC2, the crack propagates downwards with a curvy trajectory and, due to
the shear nature of the loading and the restricted vertical degrees of freedom, reaches the
bottom edge first and then the right vertical edge. In both cases the predicted cracks agree
to those found in the literature, see e.g. [9].
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Figure 3. Simulation results for single edge notched tests: Test geometry and load cases (a);
Polygonal finite element mesh with 15000 polygons (b); A magnified detail at the edge of the
pre-notch (c); the predicted crack patterns in terms of the phase field variable (d).
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Mixed mode | or mode Il crack propagation in a pre-notched PMMA
specimen

This test is used, e.g., by Pham et al. [10] to validate their phase-field model. The PMMA
specimen (dimensions in mm) is shown in Figure 4a. In the experimental setting, a sharp
crack, of 13.47 mm long in the present case, is created by impacting a razor blade against
the tip of 4 mm wide and 22.86 mm long pre-notch. The specimen is similar to the
standard compact test specimen except the extra hole (10 mm of diameter), which disrupts
the symmetric stress field so that the crack path proceeds curvilinearly, reaching the extra
hole as illustrated in Figure 4a (the red dotted line after [10]). Loading is imposed at
constant velocity at points A and B at rate 4E-4 mm/s. The thickness of the sample is 3
mm. The material properties and model parameters are: E = 2.98 GPa; v=0.35; at= 50
MPa; Gic = 285 J/m?; I = 0.5E-3 m. The polygonal mesh with only 5000 elements is
shown in Figure 4b. The relatively economic mesh is due to a refinement (requires
modifications to the PolyMesher code) around the expected crack path. Moreover, the
sharp pre-crack is here modelled as a topological entity with a width of 0.33 mm. The
element size at the crack tips is about 0.27 mm. Alternatively, it could be modelled as a
boundary condition for the phase field, i.e., the phase field variable having value 1 at the
mesh nodes on both sides of the crack. However, this method also requires tailoring the
mesh details [10]. The predicted crack path agrees with the experimental one quite well,
as observed in Figure 4d.
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Figure 4. Simulation results for the pre-notched PMMA specimen: Test geometry and load cases
(a); Polygonal finite element mesh with 5000 polygons (b); Deformed mesh with magnification
(c); the predicted crack pattern compared to the experimental one (after [10]) (d).
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Engineering problem: Slope stability under self-weight

A geotechnical engineering problem of slope stability under self-weight is solved as the
final numerical example. More specifically, the problem concerns a homogenous 2D soil
slope with critical dimensions so that instability occurs with the unit weight y = 20 KN/m?®,
cohesion co = 12.38 kPa and the friction angle ¢ = 20°. The Young’s modulus and
Poisson’s ratio are 10 MPa and 0.4, respectively. The phase field model parameters are:
Giic = 200 N/m and Ic = 0.15 m. The polygonal element mesh with 15000 elements and
the boundary conditions are shown in Figure 5a. The element size is * 100 mm. The
loading is applied gradually so that = 20 kN/m?-n/100 for n < 100, and y = 20 kN/m?
for n > 100. The red dashed line in Figure 5a sketches the theoretical and experimental
toe failure mode.

The predicted failure type is the toe failure, i.e., the instability failure initiates at the
toe of the slope and propagates towards to the top of the slope. However, the failure band
does not reach the top edge of the slope but deviates towards the right edge of the meshed
domain, as can be observed in Figure 5c. Nevertheless, this prediction agrees with that by
Wang et al. [8] using also the phase field approach. It is important to emphasize that this
is not a problem related to the Mohr—Coulomb criterion because it can predict the correct
failure band (reaching the top edge) when used as a yield criterion in a plasticity model,
as demonstrated by Xiang & Zi-Hang [19]. The problem thus seems to be in the present
phase field formulation itself.

K
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Figure 5. Simulation results for the problem of slope stability under self-weight: Model geometry
and the boundary conditions shown with the polygonal mesh (15000 polygons) (a); the predicted
failure mode at loading step n = 150 (b) and at n = 150 (¢).
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Conclusions

A phase field model for brittle fracture was implemented with polygonal finite elements
based on the Wachspress rational interpolants. The phase field model was formulated as
a hybrid, i.e., the elastic energy used in the variational formulation does not drive the
fracture (the phase field evolution). Instead, the fracture is driven by separate, stress-based
crack driving forces, of the Rankine and Mohr—Coulomb type, respectively, for tensile
and compressive failures. However, the elastic energy is employed, in its isotropic form,
to calculate stress and material stiffness (elasticity tensor). Within the staggered solution
strategy for the coupled system, it follows from this feature that the tangent stiffness
operator remains linear and therefore its solution is fast and robust.

The main drawback of the present hybrid-isotropic formulation is that it ignores the
unilateral effects of damage in tension and compression and is thus not suitable for cyclic
loadings. Moreover, the polygonal elements are computationally more intensive than the
traditional finite elements due to the rational interpolants. The present combination was
also found to be somewhat mesh sensitive. Nevertheless, the present method was
successfully applied to some benchmark problems in the phase field literature, and it
performed very well. However, the phase field method, at least the present formulation,
fails partially to predict the correct failure mode in a slope stability problem under self-
weight. The method predicts the correct failure initiation at the toe of the slope, but it does
not reach the top of the slope. This issue should be studied more in future. Finally, a study
comparing the performance of the traditional finite elements and the polygonal ones in
modelling crack propagation in brittle materials with the phase field approach is needed.
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Appendix A

A mesh sensitivity study is performed here with the pre-notched PMMA specimen,
however, removing the sharp crack because the meshing algorithm by Talischi et al. [15]
cannot handle such a fine detail successfully. The boundary conditions and the material
properties are the same as those used above. However, the length scale parameter is
adjusted according to the element size in the meshes shown in Figure 6 so that Ic =2 mm,
lc=1.5mm, and lc=1 mm for meshes with 2000, 4000, and 8000 elements, respectively.

2000 eles 4000 eles 8000 eles

Figure 6. The polygonal meshes with 2000, 4000, and 8000 polygons for the mesh sensitivity
study with the pre-notched tension specimen.

The simulation results are shown in Figure 7. The crack path starts at the tip of the notch
and propagates to the edge of the extra hole with each mesh, albeit with differing details
(Figure 7a). The corresponding force-crack opening displacement (COD) curves in
Figure 7b show that the mesh with 2000 elements is too coarse while the two denser
meshes result in much more similar force-COD responses. This, together with the crack
path details, suggest that the finest mesh here is enough for this problem. In any case, the
simulations here show that the present formulation of the phase field method with
polygonal elements is mesh sensitive.

184


https://doi.org/10.1007/s40534-017-0123-0

a 2000
eles

., ——2000 eles
N - = +4000 eles
8o ‘ T 8000 eles
&
z 60 v,
[0} A%
2 Ve
40
A
\
20 \\-."-.
v
AT
0.05 0.1 0.15 0.2 0.25
b COD [mm]

8000
eles

Figure 7. Simulation results for the mesh sensitivity study with the pre-notched tension specimen:
The predicted failure modes in terms of the phase field variable (a); The corresponding force-

crack opening responses (b).
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