
Rakenteiden Mekaniikka (Journal of Structural Mechanics)
Vol. 58, No. 4, 2025, pp. 197–207
https://rakenteidenmekaniikka.journal.fi/index

https://doi.org/10.23998/rm.152499

© 2025 The Authors
Open access under the license CC BY 4.0

On the derivation of constant-coefficient partial differen-
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Summary Here the problem of formulating a representative model problem of shell theory is
considered. We study two ways to obtain a constant-coefficient expression for the strain energy
density function of a linearly elastic shell. The first formulation has already been given in the
context of the analysis of boundary layers in thin shells, while the other is introduced here. It
appears that the essential difference between the formulations is that the constant-coefficient
expressions for the strains given here depend on four geometric parameters instead of the two
parameters of curvature needed by the earlier derivation. The source of this discrepancy is
investigated and shown to be related to the properties of the metric tensors that are attainable
by means of different parametrizations of a given surface.
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Introduction

Utilizing a representative model problem is a standard technique to approach the math-
ematical analysis of partial differential equation models. Ideally, such model problem
should capture all essential aspects of the cases of interest, while being as simple as
possible to make the analysis easier, or even to allow for the derivation of analytical so-
lutions of special cases. The formulation of an ideal model problem is not, however, a
straightforward question in the case of shell equations characterizing the deformation of a
curved three-dimensional body of a small thickness, as generally the pertinent equations
are quite cumbersome. Moreover, the comparison of different versions of shell equations
is complicated owing to the use of different approximations and various ways to represent
the equations (as an example, one may choose to use either the Christoffel symbols or
geometric Láme parameters to describe the necessary relations of differential geometry).

A special feature of the shell equations is that a parametrization of the shell mid-
surface has a crucial effect on the detailed expressions attained for the field equations,
and possible complications caused by the choice of the parametrization are eventually
felt by the analyst when the solution of a special case is attempted. The geometry
representation thus affects the parametrized form of strains and possibly expressions for
a material law. It is clear that here a clever surface parametrization can be very helpful.
In particular, the orthogonality of a surface parametrization is seen to be desirable so
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that special simplicity may be attained (especially, the application of the material law to
describe the strain energy density is then made easier). It should be noted that here an
orthogonal parametrization is understood to mean a representation leading to orthogonal
curvilinear coordinates in the surface.

We note that lines of curvature enable an orthogonal parametrization in special cases
and that historically they have been applied commonly to treat special problems of shell
theory with analytic methods. This technique is based on the differential geometric result
that the minimal curvature and maximal curvature of a smooth surface are characterized
by two orthogonal directions (i.e., the principal directions). This enables the generation
of a line of curvature as an integral curve on the surface whose tangent vector is always
aligned with a principal direction of one type. In general the definition of lines of curva-
ture coordinates may however be problematic, since the definition of a net of orthogonal
curvilinear coordinates suffers from an ambiguity at an umbilical point where the maximal
and minimal curvatures are non-zero and the same. We note that such singular points
are often isolated.

Now, if a parametrization by lines of curvature is possible, it is a candidate for a perfect
choice for the formulation of model problem related to the analysis of thin shells. As
already mentioned, a global parametrization of a general mid-surface by lines of curvature
coordinates may not exist owing to the singularities. However, a local version may often
be generated, so this technique is indeed useful to treat local analyses despite we may
miss the global form of the surface representation in this way.

Further simplifications may also be attempted by seeking approximations which lead
to formulating the shell problem in terms of a constant-coefficient system of partial differ-
ential equations. Such equations have traditionally been given in the context of shallow
shell theory where the shell mid-surface is typically defined in the form z = f(x, y). If
f(x, y) is replaced by a polynomial expression of order 2 in the variables x and y, constant
coefficients may be obtained; cf., for example, [10].

Although the primary aim of the much later paper of Pitkäranta, Matache and Schwab
[9] is not related to the formulation of shell models, their study nevertheless describes an
interesting derivation of simplified models that are suitable for analysing shallow shells.
This derivation is motivated by the desire to obtain a constant-coefficient system of partial
differential equations over a two-dimensional domain, so that the geometric parameters
need not be considered to depend on place. A detailed treatment of boundary layer effects
related to the modelling of thin elastic shells is then given in [9] by using these equations.
We note that the models considered bear a similarity to those of other studies [2, 6, 7]
and [8], where a constant-coefficient approximation is also employed in the context of the
analysis and design of finite element methods for shell problems.

In the study [9] the derivation of simplified shell models begins with the assumption
that a global parametrization of the shell mid-surface by lines of curvature coordinates
is available. Additional assumptions are then introduced so that the shell equations are
finally expressed with constant coefficients by using a representation which gives only an
approximation to lines of curvature coordinates. This process of approximation, however,
appears to be proceeding in the reverse direction to what may occur in the practical
modelling of surfaces. As obtaining a parametrization by lines of curvature coordinates
is not straightforward in general, it is more common in practice that one has some initial
parametrization of a surface and then one may proceed to seek for a more convenient
reparametrization which gives an approximation to lines of curvature coordinates. Such
a procedure has previously been considered by the present author in [3].
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The aim of the present paper is to demonstrate the utility of the differential geometric
results obtained in [3] by considering the derivation of simplified shell models. In particu-
lar, to pursue the reductions sought in [9], we consider the approximations which are seen
to be necessary so as to obtain a constant-coefficient shell model. The direct use of the
results already derived in [3] actually makes this procedure very straightforward. We also
study connections between the present approach and the approximation procedure which
is described in [9]. As we shall see that the two procedures lead to the strain expressions
depending on different sets of constant parameters, it will be considered worthwhile to
study the origin of this discrepancy.

To make a broader comparison with related studies, we note that quite similar simpli-
fications of shell equations in the vicinity of a preassigned point P may also be obtained
without confining to lines of curvature coordinates. In particular, the study [5] is focused
on the case of locally Cartesian coordinates on a curved surface which are such that the
associated components of the first fundamental form (called the metric tensor) have zero
partial derivatives of first order at P . This implies that the Christoffel symbols vanish at
P (whence they may also be considered relatively small in the immediate vicinity of P ),
and therefore simpler formulae for differentiation may be obtained since the first partial
derivatives of tensor components can be used to evaluate the corresponding covariant
derivatives at P . The development presented in [5] does not thus impose a restriction
on the possible form of the second fundamental form, which is needed to describe the
curvatures of the surface. The absence of such a constraint is also characteristic of the
constant-coefficient formulations of the related studies [2, 6, 7] and [8]. Moreover, it is
readily observed that the development given in [2, Section 2] particularly conforms to the
definition of locally Cartesian coordinates.

On the other hand, the reparametrization method of [3] which we apply here requires
that the components of both the second and first fundamental forms remain diagonal up
to an approximation of optimal degree as we move away from P . As these prerequisites are
different from that of [5], this does not in general lead to curvilinear coordinates which are
locally Cartesian in the sense of the above definition. Indeed, we shall demonstrate that
the Christoffel symbols evaluated at P may be nonzero and therefore the theory developed
in [5] does not apply. This paper will arrive at the conclusion that the discrepancy of
the constant-coefficient expressions of strains is intimately related to the properties of
the metric tensors that are attainable by means of different parametrizations of a given
surface.

Our plan is first to introduce some basic definitions which enable us to introduce
fields which measure strain of a thin shell. After these preliminaries, we show how the
differential geometric results obtained in [3] give the expressions for the strains over a local
region in a straightforward manner. The connection of this derivation and the formulation
of [9] is then studied. For brevity of exposition, we do this by considering in more detailed
way only the expressions for the membrane strains. Finally, before making concluding
remarks, a simple application is also given to illustrate that the four-parameter strain
expressions cannot be simplified in practical cases, so they are in general believed to be
the simplest consistent approximations when the surface parametrization is based on [3].
On the other hand, the two-parameter expressions can be reached at the cost of having
greater errors in the diagonalization conditions of the fundamental forms as compared
with errors that would have been attainable by the full use of the geometric parameters
assumed to be known in [9]. It should be mentioned that in the following the standard
summation convention of tensor analysis will be used; cf. [4].
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Preliminaries

In order to introduce fields which measure strain of a shell body, we assume that its
mid-surface S ⊂ E3 is parametrized as

ω ∋ (y1, y2) ≡ y 7→ φ(y) ∈ S, (1)

where ω ⊂ R2 is supposed to be associated with orthonormal basis vectors êα. Since we
are restricting our attention to an orthogonal parametrization, the differentiation of this
function as

âα(y) = Dφ(y)[êα] = ∂αφ(y) (2)

gives an orthogonal system of covariant basis vectors aα : S → R3 via the alternate
descriptions of âα as

aα(p) ≡ (âα ◦φ−1)(p). (3)

In order to obtain a system of normal coordinates, we also define

â3 =
â1 × â2√

a
, (4)

with a denoting the determinant of the metric surface tensor defined by Aαβ = âα · âβ.
In addition, the second fundamental form and the Christoffel symbols are defined by

Bαβ = â3 · ∂αâβ = −âα · ∂βâ3 (5)

and
Γγ
αβ = ∂βâα · âγ, (6)

where âα are the contravariant basis vectors such that âi · âj = δji , with δji the Kronecker
delta. In the case of a parametrization by lines of curvature coordinates the principal
curvatures may now be expressed as (we note that these definitions depend on a choice
of sign)

1

R1(y)
= −B11(y)

A11(y)
= −B1

1(y) and
1

R2(y)
= −B22(y)

A22(y)
= −B2

2(y). (7)

In the traditional shell theory the displacement field u : S × [−d/2, d/2] → R3 of the
shell of thickness d is written in the form

u(φ(y), y3) ≡ û(y, y3) ≡ v(y)− y3β(y), (8)

where v : ω → R3 gives the mid-surface displacement and the field β related to rotations
is assumed to be of the form β = â3 × θ. We now let U denote an n-tuple of two-
dimensional scalar fields which determine û. If we choose to represent the strain tensor
field as

E(û)(y, y3) = Eij(û)(y, y
3)âi(y)⊗ âj(y) (9)

and if we do not model the stretch in the thickness direction, we may write

Eij(û(U))(y, y3) = γij(U)(y)− y3κij(U)(y), (10)
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where

2γαβ(U) = âα · ∂βv + ∂αv · âβ,

2γα3(U) = â3 · ∂αv − âα · β,
καα(U) = âα · ∂αβ − καγαα(U),

2κ12(U) = â1 · ∂2β + ∂1β · â2 − κ2â1 · ∂2v − κ1∂1v · â2,

2κα3(U) = â3 · ∂αβ − καâ3 · ∂αv,

(11)

with κ1 ≡ B1
1 and κ2 ≡ B2

2 .
Now, if we choose to use the component representations v = (v · âk)â

k and β =
(β · âα)â

α, the equations (11) can be used to obtain the traditional expressions for strains
in terms of the covariant derivatives which enable differentiation as (see, for example, [1])

∂α(viâ
i) = (vβ|α −Bαβv3)â

β + (v3|α +Bβ
αvβ)â

3,

with
vβ|α ≡ ∂αvβ − Γν

αβvν , v3|α ≡ ∂αv3. (12)

Alternatively, a local orthonormal basis

{e1(y),e2(y),e3(y)} = {e1(y),e2(y),e3(y)}

may be introduced by defining

eα(y) =
âα(y)

Aα(y)
, e3(y) = â3(y), (13)

with
Aα(y) = |âα(y)| (14)

giving the geometric Lamé parameters. One may then choose to use the component
representations v = (v · ek)e

k and β = (β · eα)e
α in order to compute the strains (11).

In this case, the well-known equations for the derivatives of the basis vectors ek(y) may
be applied.

If the orthonormal basis is used, it is also convenient to express the strain tensor field
as

E(û)(y, y3) = Êij(û)(y, y
3)ei(y)⊗ ej(y), (15)

with the different components of the versions (9) and (15) related by

Êαβ(û) =
Eαβ(û)

AαAβ

, Êα3(û) =
Eα3(û)

Aα

, Ê33(û) = E33(û). (16)

This alternative can be followed to create the component expressions of strains so that
their geometric parameters depend only on Aα. This choice is taken as the starting point
in the study [9].

We finally note that here a basic material model of linear elasticity is assumed, so that
the strain energy density is based on the relations [4]

W (E) =
1

2
T kmEmk

T rk = λ(AqpEpq)A
rk + 2µAmrAksEms

where the stress tensor T rk is expressed in terms of the Lamé parameters λ and µ of the
material. In the case of an ideal surface parametrization the application of the material
law can thus be made without any reference to the metric tensor.
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Shell equations by surface reparametrization

Constant-coefficient approximations of the strains over a local domain can be obtained in
a straightforward manner by using the differential geometric results derived in [3]. The
key idea employed therein is that the local graph of the mid-surface

φS(x) ≡ (x, z(x)), (17)

with x denoting a point on a planar region S, may be reparametrized by a composition

φS ◦ ϕ : ω ⊂ R2 → E3 (with S = ϕ(ω)) (18)

which can be thought of as consisting of polynomial perturbations added to the simplest
reparametrization functions (that is, xα(y) = yα), provided we have adjusted the orien-
tation of the coordinate axes to agree with the principal directions of the mid-surface at
the origin o. The coefficients of the perturbation monomials are specified such that the
resulting surface basis vectors are orthogonal and the components of the second funda-
mental form of the surface remain diagonal up to a desired degree as we move away from
the origin. In practice the Taylor polynomial

z(x1, x2) =1/2a(x1)2 + 1/2b(x2)2 + 1/6d(x1)3 + 1/2e(x1)2x2+

1/2fx1(x2)2 + 1/6g(x2)3 +O(|x− o|4)
(19)

is employed to analyse how well the desired conditions are respected.
The task of the reparametrization is thus to find the coefficients occurring in the choice

ϕ(y) ≡ (y1 +
1

2
c1(y

2)2 + c2y
1y2 +

1

2
c3(y

1)2+

1

6
c4(y

1)3 +
1

2
c5(y

1)2y2 +
1

2
c6y

1(y2)2 +
1

6
c7(y

2)3,

y2 +
1

2
b1(y

1)2 + b2y
1y2 +

1

2
b3(y

2)2+

1

6
b4(y

1)3 +
1

2
b5(y

1)2y2 +
1

2
b6y

1(y2)2 +
1

6
b7(y

2)3).

(20)

It should be noted that the case of a = b (that of an umbilical point) is problematic when
the shell is not spherical, since in this case we can diagonalize the second fundamental
form only if e = 0 and f = 0. In view of the aim of the present discussion, it is however
sufficient to consider the case a ̸= b. For a discussion of possible options in the case a = b,
we only refer to [3].

The full expansions of the differential quantities of our interest here can be found in [3].
For the purpose of the present study, it is sufficient to truncate these expansions as

A11(y) = A22(y) = 1− 2c1y
1 + 2c2y

2 +O(|y − o|2),
1

R1

(y) = a+ dy1 + ey2 +O(|y − o|2),

1

R2

(y) = b+ fy1 + gy2 +O(|y − o|2),

Γ1
11(y) = Γ2

12(y) = −Γ1
22(y) = −c1 +O(|y − o|),

Γ2
22(y) = Γ1

12(y) = −Γ2
11(y) = c2 +O(|y − o|),

(21)
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where

c1 =
f

b− a
and c2 =

e

b− a
. (22)

We note that the conditions (22) result from the requirement of the diagonalization of
the second fundamental form. It is also noted that the perturbation terms of (20) up to
order 2 in yα can be expressed solely in terms of these two constants as

x1 = y1 +
1

2
c1(y

2)2 + c2y
1y2 − 1

2
c1(y

1)2,

x2 = y2 − 1

2
c2(y

1)2 − c1y
1y2 +

1

2
c2(y

2)2.
(23)

For later use, we note that the first equation of (21) gives

∂A1

∂y2
(0) = c2,

∂A2

∂y1
(0) = −c1. (24)

In addition, we obtain

c11 =
∂

∂y1
(
1

R1

)(0) = d,

c12 =
∂

∂y2
(
1

R1

)(0) = e,

c21 =
∂

∂y1
(
1

R2

)(0) = f,

c22 =
∂

∂y2
(
1

R2

)(0) = g.

(25)

Our reparametrization is then seen to respect the Codazzi conditions evaluated at y = 0
as

∂A1

∂y2
(
1

R2

− 1

R1

)
∣∣∣
y=0

= A1(0)c12,
∂A2

∂y1
(
1

R1

− 1

R2

)
∣∣∣
y=0

= A2(0)c21. (26)

It is now an easy task to obtain constant-coefficient expressions for strains by taking
into account only the leading terms. For example, the membrane strains with respect to
the orthonormal basis may be approximated as

γ̂11 =
1

A1

∂v1
∂y1

+
v2

A1A2

∂A1

∂y2
+

v3
R1

≈ ∂v1
∂y1

+ c2v2 + av3,

γ̂22 =
1

A2

∂v2
∂y2

+
v1

A1A2

∂A2

∂y1
+

v3
R2

≈ ∂v2
∂y2

− c1v1 + bv3,

2γ̂12 =
1

A1

∂v2
∂y1

+
1

A2

∂v1
∂y2

− v1
A1A2

∂A1

∂y2
− v2

A1A2

∂A2

∂y1
≈ ∂v2

∂y1
+

∂v1
∂y2

− c2v1 + c1v2,

(27)

where the components vk = v ·ek are used. We thus conclude that we need four geometric
parameters

a, b, c1 =
f

b− a
, c2 =

e

b− a

to obtain a constant-coefficient form of the strain energy density.
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An alternative derivation of shallow shell equations

The constant-coefficient formulation of shell equations (as we here consider only the ex-
pressions for the membrane strains, we follow the abbreviations of the original study and
refer to it as the LNKS formulation below) given by Pitkäranta, Matache and Schwab
in [9] assumes that a global surface parametrization by lines of curvature coordinates is
available. Now this parametrization is subject to an additional constraint that the curvi-
linear coordinates in the surface correspond to arc-length parameters α = (α1, α2) such
that A1(α

1, 0) = 1 and A2(0, α
2) = 1. The assumption of shallowness is also made, so

that ϵ = L/R ≪ 1, where L characterizes the maximal distance of two points along a
part of surface considered and 1/R measures the curvature.

The derivation of constant-coefficient expressions for the strains is then done in terms
of eight pointwise parameters (cf. (24) and (25))

kα =
1

Rα

(0), a1 =
∂A1

∂α2
(0), a2 =

∂A2

∂α1
(0), cαβ =

∂

∂αβ
(
1

Rα

)(0), (28)

but the final formulation depends only on two curvature parameters kα which now satisfy
k1 = a and k2 = b. This is in contrast to the approximation of the preceding section
which needs four geometric parameters. Our aim here is to investigate from where this
quite substantial difference may emerge.

Although the original derivation of the LNKS formulation does not utilize the notion
of graph as given by (17), its first step can be constructed by considering again the
reparametrization of (17). The original study assumes that the nonparametric form (17)
is related to lines of curvature coordinates by a parametric representation

(x1(α), x2(α), z(x1(α), x2(α)))

with the approximations

x1(α) = α1 + a1α
1α2 − a2

2
(α2)2,

x2(α) = α2 + a2α
1α2 − a1

2
(α1)2.

(29)

In order to make the connection between (29) and the reparametrization of the pre-
ceding section fully explicit, we may first calculate the arc-length parameters as

s1 =

y1∫
0

√
A11(t, 0)dt = y1 − 1

2
c1(y

1)2 + o[(y1)2], (30)

s2 =

y2∫
0

√
A22(0, t)dt = y2 +

1

2
c2(y

2)2 + o[(y2)2]. (31)

By using these, the truncated expressions (23) can be transformed into the form

x1(s1, s2) = s1 +
1

2
c1(s

2)2 + c2s
1s2,

x2(s1, s2) = s2 − 1

2
c2(s

1)2 − c1s
1s2,

(32)
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so this parametrization is of the same form as the transformation (29) used in the deriva-
tion of the LNKS formulation. Finally, if we evaluate the parameters aα for (32), we
conclude that they satisfy

a1 = c2, a2 = −c1.

Interestingly, these relations give the interpretation for aα in terms of the coefficients of
the Taylor polynomial of degree 3.

Despite the agreement of the two parametrizations of the graph up to the terms of
order 2, the constant-coefficient strains of the LNKS model as given in [9] do not agree
with those obtained in the preceding section. At first sight, the situation might seem
puzzling as the above considerations which led us to the approximations (27) do not in
general suggest a further means to get rid of terms of the type

vν
∂Aα

∂yβ
. (33)

Indeed, the present author believes that these expressions might be the simplest consistent
approximations when lines of curvature coordinates are approximated by means of the
full parametrization of the form (20).

However, the derivation presented in [9] eventually discards the parametric form of the
graph based on the transformation (32) by means of transformation to a nonparametric
form where the Cartesian coordinates of the planar region S are directly employed as
curvilinear coordinates, i.e., the curvilinear coordinates are defined via the choice xα(y) =
yα. This naturally gives rise to a different metric tensor which is seen to conform to the
theory of locally Cartesian coordinates [5]. Therefore, the first partial derivatives of the
components of the metric tensor (as wells as the Christoffel symbols) evaluated at the
origin are zero which enables the derivation of approximate strain expressions depending
only on the curvature parameters (cf. [2, Section 2]). We however mention that using
the nonparametric representation together with the Taylor polynomial of order 3 does
not lead to an optimally accurate diagonalization of the components of the fundamental
forms. Therefore, if more accurate expressions for strains were sought, this representation
would lead to adopting a broader repertoire of tensor computations, while the use of the
full parametric form of the graph would even then offer the simplicity related to the lines
of curvature coordinates.

Finally we note that if the approximate strains given by (27) are applied, it may of
course happen that their dependence on the two non-curvature parameters cα become
insignificant. Therefore, let us consider under what conditions the terms of the type (33)
become negligible if we utilize the reparametrization of the preceding section. Since the
expansions (21) give

e =
∂

∂y2
(
1

R1

)(0), f =
∂

∂y1
(
1

R2

)(0),

the conditions |(∂A1/∂y
2)(0)| = |e/(b − a)| ≪ 1 and |(∂A2/∂y

1)(0)| = |f/(b − a)| ≪ 1
lead us to the requirement

| ∂

∂yβ
(
1

Rα

)| ÷ | 1
R2

− 1

R1

| ≪ 1. (34)

That is, in the case of the parametrization considered here, slowly varying curvatures are
required. This condition is unrelated to the assumption of shallowness, which ensures
that |y−o|/|R| ≪ 1, or |y−o| ·

√
a2 + b2 ≪ 1, with y ∈ ω. We note that a basic example

of the case which allows for the additional reduction is the case of a straight cylindrical
shell, as its curvature is a constant and then (34) naturally holds.
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Table 1. The patchwise approximations of geometric parameters.

S1 S2 S3 S4

a 1.90 · 10−1 1.84 · 10−1 1.82 · 10−1 1.76 · 10−1

b −1.04 · 10−0 −5.76 · 10−1 −7.49 · 10−1 −4.89 · 10−1

d 1.00 · 10−2 6.44 · 10−2 5.97 · 10−2 4.64 · 10−2

e 8.08 · 10−2 1.89 · 10−2 3.64 · 10−7 −6.55 · 10−3

f −2.89 · 10−0 −1.10 · 10−0 −1.58 · 10−0 −8.55 · 10−1

g 2.28 · 10−1 1.53 · 10−2 −3.48 · 10−7 3.12 · 10−2

c1 2.35 · 10−0 1.45 · 10−0 1.70 · 10−0 1.29 · 10−0

c2 −6.57 · 10−2 −2.49 · 10−2 3.91 · 10−7 9.85 · 10−3

A computational example

We shall next illustrate that in practical applications the non-curvature parameters c1
and c2 can be significant as compared with the curvature parameters, so that evidence is
given that the strain expressions of (27) cannot indeed be simplified further. To illustrate
this, we now consider a shell with the mid-surface

S = [1/4, 3/4]× [0, 1/2] ∋ (u, v) 7→ (u, v, exp(−
√

(u2 + v2)/3)

and divide S regularly into four patches Si. In practice a mesh of four finite elements
is generated. The geometric parameters to generate the reparametrization of each patch
by approximate lines of curvature coordinates have already been computed in [3] and are
also reproduced in Table 1, together with the values of the constants ci. Here we have
c1 = O(1), so we see no consistent way to express the constant-coefficient approximations
given by (27) in terms of only two geometric parameters a and b.

Concluding remarks

We have here shown that the application of the method described in [3] to produce a
consistently accurate reparametrization by lines of curvature coordinates leads to the
simplified expressions of strains which depend on four geometric parameters. This is
in contrast to the earlier derivations which need only two parameters of curvature. Such
discrepancy is intimately related to the properties of the metric tensors that are attainable
by means of different parametrizations of a given surface.

While the reparametrization method applied here produces a more faithful represen-
tation of lines of curvature as compared with the earlier formulations, it does not lead
to the metric tensor that allows the curvilinear coordinates to be locally Cartesian [5].
Therefore the associated Christoffel symbols do not in general vanish at a preassigned
point. On the other hand, the two-parameter expressions of related studies have been
reached by using locally Cartesian curvilinear coordinates at the cost of having greater
errors in the diagonalization conditions which are natural for the fundamental forms cor-
responding to lines of curvature coordinates. Such errors are insignificant in the case of
rudimentary models, but if more accurate ways to evaluate the strain energy density were
sought, the presence of non-diagonal components of the fundamental forms would lead to
adopting a broader repertoire of tensor computations, whereas the consistently accurate
reparametrization by lines of curvature coordinates is designed to avoid such additional
complexity of computation.
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