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Finite element methods for elastic contact:
penalty and Nitsche

Tom Gustafsson and Rolf Stenberg1

Summary We consider two methods for treating elastic contact problems with the finite ele-
ment method; the penalty method and Nitsche’s method. For the penalty method we discuss
how the penalty parameter should be chosen. Both the theoretical analysis and numerical ex-
amples show that an optimal convergence rate cannot be achieved. The method is contrasted to
that of Nitsche’s method which is optimally convergent. We also give the derivation of Nitsche’s
method by a very simple consistency correction of the penalty method.
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Introduction

The paper Variational methods for the solution of problems of equilibrium and vibra-
tions [3], presented by Richard Courant at the American Mathematics Society meeting in
Washington D.C. in 1941, is widely considered as a starting point in two fields of applied
mathematics, finite element methods and the use of the penalty method in optimization.
For the case of optimization this appears to be the case, see, e.g., the classical books
[5, 12].

In the field of finite elements, the continuous piecewise linear basis functions are often
referred to the ”Courant triangle” or ”Courant hat function”. The paper by Courant came
out in print in 1943, and to celebrate the 50th anniversary, a conference was organized in
Jyväskylä [9]. Ivo Babuška gave an invited talk, in which he outlined the history of the
finite element method. Surprisingly, he discovered that none of the earliest paper on the
mathematical foundations of the FE cite Courants paper. Furthermore, he pointed out
that piecewise linear approximation method was not presented at the conference, it was
introduced as an appendix in the final paper.

The same comment is given by Gilbert Strang in the first textbook (Strang & Fix
[16]) on the mathematics of finite elements: the penalty method was the main theme of
Courant’s remarkable lecture; the finite element method was an afterthought.
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Today, the penalty method is widely used in finite elements, especially in applied
engineering. From a mathematical point of view, the method is non-conforming and the
central question is how to choose the penalty parameter. The engineering literature is
rather vague on this issue, cf. [10, 18]. The same applies for some commercial codes that
we checked, with the COMSOL as an exception.

Below we will discuss this matter and we will also recall Nitsche’s method which gives
a simple fix to the method.

The penalty method

All the questions we are going to address can be answered by considering ”mortaring”
of the Poisson equation. To consider elasticity only adds more notation. To consider
a contact problem where the contact zone is unknown leads to technicalities involving
variational inequalities, cf. [7]. By treating both of these would only blur the message of
this paper.

Hence, we consider the Poisson problem in a domain Ω ⊂ IRn, that we split in two
Ω = Ω1 ∪ Ω2, with the continuity conditions at the common boundary Γ = ∂Ω1 ∩ ∂Ω2:
find u = (u1, u2) such that

−∆ui = f in Ωi,

u1 − u2 = 0 on Γ,

∂u1

∂n1

+
∂u2

∂n2

= 0 on Γ,

ui = 0 on ∂Ωi \ Γ.

(1)

Clearly U , with U |Ωi
= ui, i = 1, 2, solves the equation

−∆U = f in Ω, U = 0 on ∂Ω. (2)

The continuous penalized problem is: Find uε = (uε
1, u

ε
2) minimizing

E(v) =
2∑

i=1

(1
2

∫
Ωi

|∇vi|2 dx−
∫
Ωi

fvi dx
)
+

∫
Γ

1

2ε
(v1 − v2)

2 ds. (3)
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It is clear that a necessary condition in the limit ε → 0 is that u0
1 = u0

2 on Γ, with
limε→0 u

ε
i = u0

i = ui, i = 1, 2.
The physical interpretation of non-conformity of the method is that the problem is

changed to that where a distributed spring is introduced on Γ, giving the interface con-
dition

∂uε
i

∂ni

+ ε−1(uε
i − uε

j) = 0, i ̸= j.

In the FEM, we perform the minimization in subspace Vh of piecewise polynomials of
degree p.

The Finite Element Method: Find uε
h = (uε

1,h, u
ε
2,h) ∈ Vh = V1,h × V2,h that minimizes

the energy E(v) in the subspace Vh.
The accuracy of the FE solution is most naturally measured inenergy norm:

∥v∥2E =
2∑

i=1

∫
Ωi

|∇vi|2 dx+

∫
Γ

1

ε
(v1 − v2)

2 ds. (4)

The basic mathematical result is that the FE solution is the best approximation in the
energy norm, viz.

∥uε − uε
h∥E ≲ min

vh∈Vh

{ 2∑
i=1

∥∇(uε
i − vi,h)∥0,Ωi

+ ε−1/2∥uε
i − vi,h∥0,Γ

}
. (5)

For notational simplicity we now assume that ε is a constant along Γ.
Note that for FEM the exact solution is that of the penalized exact solution uε. To

the total error we should thus add the error due to lack of consistency or, alternatively
stated, modelling. It is not too difficult to show that this is

∥u− uε∥E ≲ ε1/2
∥∥∥∂u
∂n

∥∥∥
0,Γ

, (6)

where ≲ · · · stands for: there exists a positive constant C, such that ≤ C · · · .
By the triangle inequality we have

∥u− uε
h∥E ≤ ∥u− uε∥E + ∥uε − uε

h∥E. (7)

As usual, let h denote the global mesh lenght.
With the assumed smoothness of the exact penalized solution uε ∈ Hs(Ω), with 1 ≤

s ≤ p+ 1, interpolation theory yields

min
vh∈Vh

{ 2∑
i=1

∥∇(uε
i − vi,h)∥0,Ωi

+ ε−1/2∥uε
i − vi,h∥0,Γ

}
≲

(
hs−1 + ε−1/2hs−1/2

)
∥uε∥s. (8)

(This estimate was first given by Babuška [1].) By choosing ε ≈ h, we get the optimal
convergence rate

∥uε − uε
h∥E ≲ hs∥uε∥s. (9)

From (6) and (7) we thus get

∥u− uε
h∥E ≲ h1/2

∥∥∥∂u
∂n

∥∥∥
0,Γ

+ hs∥uε∥s. (10)
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From above we conclude that the modelling error is dominating, except for a very singular
solution.

The modelling error can of course be made smaller by decreasing ε. However, (8)
shows that for a given smoothness, the interpolation error will increase. The condition
number also increases from O(h−2), which is the one expected for a second order elliptic
equation.

In conclusion: with the penalty method we will never obtain a method with optimal
convergence rate.

Next, let us turn to the a posteriori error analysis. In addition to the normal terms,
and edge E ⊂ Γ yields the term [8]

η2E = hE + hE

∥∥∂uε
i,h

∂ni

+ ε−1(uε
i,h − uε

j,h)
∥∥2

0,E
, j ̸= i. (11)

In [8] we also showed that the second term above is efficient, i.e. bounded by the real
error if and only if ε ≈ h, giving an additional justification for this choice.

In the next section we will show that there is a very simple correction that leads to an
optimal method, i.e. Nitsche’s method.

Nitsche’s method [11]

Let us recall that the weak form obtained by minimizing (3) is: find uε = (uε
1, u

ε
2) such

that
2∑

i=1

(∫
Ωi

∇uε
i · ∇vi dx+

∫
Γ

1

ε
(uε

i − uj)vi ds
)
=

2∑
i=1

∫
Ωi

fvi dx (12)

for all test functions v = (v1, v2).
For the solution u = (u1, u2) of the exact problem (1) it holds

ui = uj on Γ, (13)

and hence ∫
Γ

1

ε
(ui − uj)vi ds = 0. (14)

Further, multiplying the differential equation in (1), integrating over Ωi, and integrating
by parts yields ∫

Ωi

∇ui · ∇vi dx−
∫
Γ

∂ui

∂ni

vi ds =

∫
Ωi

fvi dx. (15)

These two relations show that the exact solution satisfies

2∑
i=1

(∫
Ωi

∇ui · ∇vi dx+

∫
Γ

1

ε
(ui − uj)vi ds

)
−

∫
Γ

∂u1

∂n1

v1 ds−
∫
Γ

∂u2

∂n2

v2 ds =
2∑

i=1

∫
Ωi

fvi dx,

(16)

for all test functions (v1, v2).
Comparing this with (12), shows the non conformity of the penalty method, i.e. the

exact solution does not satisfy the penalty variational form. However, the above form
would already be the rudimentary Nitsche.
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The next step is to use the relation

∂u2

∂n2

= −∂u1

∂n1

, (17)

to get the weak form

2∑
i=1

(∫
Ωi

∇ui · ∇vi dx+

∫
Γ

1

ε
(ui − uj)vi ds

)
−

∫
Γ

∂u1

∂n1

(v1 − v2) ds =
2∑

i=1

∫
Ωi

fvi dx.

(18)

However, this is not entirely satisfying, since we end up with a non symmetric method
for a problem that is symmetric.

Hence, the final step is to symmetrise the problem. For the exact solution u = (u1, u2)
it holds u1 = u2 on Γ, and hence it holds∫

Γ

∂v1
∂n1

(u1 − u2) ds = 0. (19)

We can thus add this to the variational form, and we conclude that the exact solution
u = (u1, u2) satisfies

2∑
i=1

(∫
Ωi

∇ui · ∇vi dx+

∫
Γ

1

ε
(ui − uj)vi ds

)
−

∫
Γ

∂u1

∂n1

(v1 − v2) ds−
∫
Γ

∂v1
∂n1

(u1 − u2) ds =
2∑

i=1

∫
Ωi

fvi dx

(20)

for all test functions v = (v1, v2).
By denoting

B(u, v) =
2∑

i=1

(∫
Ωi

∇ui · ∇vi dx+

∫
Γ

1

ε
(ui − uj)vi ds

)
−

∫
Γ

∂u1

∂n1

(v1 − v2) ds−
∫
Γ

∂v1
∂n1

(u1 − u2) ds,

(21)

we define the Nitsche’s method : find uh = (u1,h, u2,h) ∈ Vh such that

B(uh, v) =
2∑

i=1

∫
Ωi

fvi dx ∀v ∈ Vh. (22)

This is the one-sided Nitsche, a master slave method, with the domain Ω1 being the slave.
By construction, the method is consistent. It remains to choose ε so that the method

is stable and have an optimal order of convergence. To this end we first have

B(v, v) =
2∑

i=1

∫
Ωi

|∇vi|2 dx− 2

∫
Γ

∂v1
∂n1

(v1 − v2) ds+

∫
Γ

1

ε
(v1 − v2)

2 ds. (23)
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Schwarz inequality gives∣∣∣ ∫
Γ

∂v1
∂n1

(v1 − v2) ds
∣∣∣ = ∣∣∣ ∫

Γ

ε1/2
∂v1
∂n1

ε−1/2(v1 − v2) ds
∣∣∣

≤
(∫

Γ

ε
∣∣ ∂v1
∂n1

∣∣2 ds)1/2(∫
Γ

1

ε
(v1 − v2)

2 ds
)1/2

.

(24)

Using the inequality ab ≤ a2 + 1
4
b2, a, b ∈ R, we estimate(∫

Γ

ε
∣∣ ∂v1
∂n1

∣∣2 ds)1/2(∫
Γ

1

ε
(v1 − v2)

2 ds
)1/2

≤
∫
Γ

ε
∣∣ ∂v1
∂n1

∣∣2 ds+ 1

4

∫
Γ

1

ε
(v1 − v2)

2 ds. (25)

Combining (24) and (25), then gives

−2

∫
Γ

∂v1
∂n1

(v1 − v2) ds ≥ −2

∫
Γ

ε
∣∣ ∂v1
∂n1

∣∣2 ds− ∫
Γ

1

2ε
(v1 − v2)

2 ds, (26)

which together with (23) gives

B(v, v) ≥
2∑

i=1

∫
Ωi

|∇vi|2 dx− 2

∫
Γ

ε
∣∣ ∂v1
∂n1

∣∣2 ds+ ∫
Γ

1

2ε
(v1 − v2)

2 ds. (27)

Now, let K ⊂ Ω1 be an element with a side/face E ⊂ Γ. By a scaling argument there
exists a positive constant CI such that

CI

∫
K

|∇v1|2 dx ≥ hE

∫
E

∣∣ ∂v1
∂n1

∣∣2 ds, (28)

where hE is the local mesh length at E. This gives∫
K

|∇v1|2 dx− 2

∫
E

ε
∣∣ ∂v1
∂n1

∣∣2 ds ≥ (
1− 2ε

CI

hE

)∫
K

|∇v1|2 dx. (29)

Hence, if we choose ε such that ε|E = hE/2γ, with γ > CI , it holds∫
K

|∇v1|2 dx− 2

∫
E

ε
∣∣ ∂v1
∂n1

∣∣2 ds ≳ ∫
K

|∇v1|2 dx. (30)

Combining with (23), then yields the result. There exists a constant CI , so that the choice
ε|E = hE/2γ, with γ > CI , for all edges/faces on Γ, yields the stability estimate

B(v, v) ≳
2∑

i=1

∫
Ωi

|∇vi|2 dx+
∑
E⊂Γ

∫
Γ

1

hE

(v1 − v2)
2 ds = ∥v∥2E (31)

By construction, the method is consistent, and together with the stability, one obtains
an optimal a priori error estimate:

∥u− uh∥E ≲ inf
v∈Vh

∥u− v∥E ≲ hs−1∥u∥s, 1 ≤ s ≤ p+ 1. (32)

Remark. When implementing the method, the crucial question is of course how difficult
it is to estimate the constant CI . For piecewise linear elements this is simple. On the
element K, with edge/face E, ∇v1 is a constant vector. Hence, it holds∫

K

|∇v1|2 dx = |∇v1|2
∫
K

dx and

∫
E

∣∣ ∂v1
∂n1

∣∣2 ds = ∣∣ ∂v1
∂n1

∣∣2 ∫
E

ds. (33)
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Since

|∇v1|2 ≥
∣∣ ∂v1
∂n1

∣∣2, (34)

it holds ∫
K

|∇v1|2 dx ≥
∫
K
dx∫

E
ds

∫
E

∣∣ ∂v1
∂n1

∣∣2 ds. (35)

Since
∫
K
dx is the volume/area of K, and

∫
Eds is the area/length of E, respectively, the

ratio
∫
K
dx/

∫
E
ds is proportional to the diameter hE, as the elements are assumed to be

shape regular.
For linear elements the threshold value for the stability is then

∫
K
dx/2

∫
E
ds and we

thus have uniform stability by choosing

ε|E = α

∫
K
dx

2
∫
E
ds

, (36)

with a chosen constant α < 1.
In [17] the following explicit estimate for the inequality (28) is given

n
∫
K
dx

(p+ 1)(p+ n)
∫
E
ds

∫
K

|∇v1|2 dx ≥
∫
E

∣∣ ∂v1
∂n1

∣∣2 ds, (37)

where p is the polynomial degree and n is the space dimension. □
In the a posteriori estimator the interface gives the terms

hE

∥∥∥∂u1,h

∂n1

+
∂u2,h

∂n2

∥∥∥2

0,E
(38)

and
hE∥u1,h − u2,h∥20,E, (39)

for an edge/face E ⊂ Γ. The estimator can be shown to be both reliable and efficient [6].
In the formulation (21)–(22), the role of u1 and u2 can be changed. The most common

is, however, to use the average

B(u, v) =
2∑

i=1

(∫
Ωi

∇ui · ∇vi dx+

∫
Γ

1

ε
(ui − uj)vi ds

)
−

∫
Γ

1

2

(∂u1

∂n1

+
∂u2

∂n2

)
(v1 − v2) ds

−
∫
Γ

1

2

( ∂v1
∂n1

+
∂v2
∂n2

)
(u1 − u2) ds.

(40)

For the case when the material parameters are different in the two domains, a convex
combination of fluxes can be used, cf. [6, 7].

Numerical verifications

In this section we will numerically confirm the theoretical results. Our first test problem
has the smooth solution

u(x, y) = xy sin
πx

2
sin πy (41)

in the domains
Ω1 = (0, 1)× (0, 1) and Ω2 = (1, 2)× (0, 1). (42)
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Figure 1. The smooth test problem.

We use uniform refinements with initial meshes that do not match at the interface
and linear element, p = 1. In the penalty method we use ϵ ≈ h. Figure 2 shows the
convergence with respect to the mesh length h. As predicted, the rates are O(h1/2) and
O(h) for the penalty method and Nitsche’s method, respectively.

10 1

h

10 1

H
1  e

rro
r

Nitsche, uniform
O(h)
penalty, uniform
O(h1/2)

Figure 2. The convergence rates for the smooth problem and a uniform mesh refinement.

Next, we run the adaptive algorithms. We see from Figure 3, that the adaptive method
detects the low convergence rate at the interface for the penalty method.
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Figure 3. The adaptive mesh for the penalty method.

For Nitsche’s method, any extra refinement along the interface does not occur, see
Figure 4.

Figure 4. The adaptive mesh for the Nitsche’s method.

Figure 5 shows that even with adaptivity the penalty falls short compared to Nitsche’s
method. Now the convergence rates are with respect to the number of degrees of freedom
N .
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102

N

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

H
1  e

rro
r

Nitsche, adaptive
penalty, adaptive
O(N 1/2)

Figure 5. The convergence rates for the adaptive algorithms.

The second test example is a problem with a singularity. The domain is L-shaped and
the solution is r2/3. The solution is in H5/2 and we choose second degree polynomials,
i.e., p = 2 in order to enforce the adaptivity. The adaptive Nitsche’s method detects the
corner singularity and refines accordingly.

Figure 6. The adaptive Nitsche’s method for the singular test problem.
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Figure 7. The adaptive penalty method for the singular test problem.

Here again, we see that the modelling error in the penalty method leads to a refinement
along the whole interface.

In the last figure the convergence rates are plotted and we again see the superiority of
Nitsche’s method.

102 103

N

10 1

Nitsche, adaptive
O(N 1)
penalty, adaptive
O(N 0.5)

Figure 8. The convergence rates for the singular test problem.

Concluding remarks

We have shown that the Nitsche’s method can be seen as a very simply modification of the
penalty method, yielding a method with optimal order of convergence. One can say that
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it is pity that Nitsche published his paper in German and in a not well-spread journal.
As a consequence, it took a long time for the method to spread.

However, once one understands the method, one is stunned by its simplicity and
elegance, and it is clear that there is an abundance of applications.

Let us close the paper by some recollections by the senior author of this paper. He
stumbled on the method by studying stabilized mixed methods for enforcing boundary
conditions, and concluded that these are essentially the same as Nitsche. At the Finnish
Mechanics Days 1994, in Jyväskylä he presented a paper [13]. The paper was later
expanded and published internationally [14], and it ended with the conclusion that the
method should be explored for contact problems. This was done by Jouni Freund in his
thesis [4] and in a short note in the world congress of computational mechanics in Buenos
Aires 1998 [15]. Peter Hansbo was the opponent at Freund’s thesis defence, and later
Hansbo and his Swedish colleagues, Mats Larson and Erik Burman, have studied the
method intensively for a variety of problems.

Another group that has made substantial contributions for elastic contact consists of
Yves Renard, Patrick Hild and Franz Chouly, summarized in the recent monograph [2].
This book also include, e.g., frictional and dynamic problems.

Nitsche’s method is by now included in several FEA codes, like COMSOL (https:
//www.comsol.com) and GetFEM (https://getfem.org).
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