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Design of a non-linear wire-rope tuned mass damper –
linearized model-based approach

Samuli Rytömaa1, Sampo Laine and Raine Viitala

Summary Wire rope springs are used in tuned mass damper applications due to their inher-
ent energy dissipation properties, low cost, thermal stability and mechanical robustness. The
dynamics of the wire rope springs are characterized by the relative sliding of the strands inside
the wire ropes. Damping of the wire rope consists of the friction loss between the wire strands
and structural damping under mechanical deformations. Moreover, the relative sliding alters
the effective stiffness of the structure. These properties are non-linear and depend on the vibra-
tion amplitude. Modeling these non-linear dynamics has proven difficult, and no clear standard
approach for design exist. In this paper, an amplitude based linearization framework is used to
model the system dynamics for wire rope based tuned mass damper. The vibration suppression
performance of the wire-rope tuned mass damper is compared to a linear tuned mass damper
with similar mass ratio. The performance of the two dampers are compared for a system with
multiple degrees of freedom, and the possible mistuning of the dampers is also considered. The
results show that wire rope based tune mass damper, in comparison to a conventional linear
tuned-mass damper, can suppress vibrations with a wider frequency band and under varying
natural frequencies.
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Introduction

Excessive vibrations are a common cause for industrial machinery failures and productiv-
ity losses. The most severe of these vibration conditions is resonance, which in some cases
cannot be avoided. While previously machinery have often had a constant operational
speed, modern machines have multiple operational speeds due to the increased use of vari-
able frequency drives. The wider operational speed range can excite multiple resonance
frequencies, which has created a need for wider band vibration mitigation methods. Ad-
ditionally, applications experiencing varying natural frequencies can benefit from tuned
mass dampers robustness to this variation.

Tuned mass dampers (TMD) have been used to solve resonance problems for over a
hundred years since their first invention [6, 9]. The TMD is an auxiliary mass attached to
the vibrating structure using springs. The mass and stiffness of this auxiliary element are
tuned so that its tuning frequency is the same as of the vibrating structure. The damper

1Corresponding author: samuli.rytomaa@aalto.fi

33

https://rakenteidenmekaniikka.journal.fi/index
https://doi.org/10.23998/rm.152288


Figure 1. On the left (a) is a wire rope spring, made from metal pieces that are connected to each other
using steel wire rope. The loop diameter of this wire rope spring is 32 mm and the wire diameter is 5
mm. The wire rope cross section is presented in the lower left corner. On the right (b) is an example
arrangement of wire rope tuned mass damper used in this study. The auxiliary mass is placed on top of
wire rope springs, which creates a compressive preload on the springs.

will create a counteracting force to eliminate the vibration of the primary structure. The
tuned mass damper works only on a small frequency band, and its effective range can be
extended by adding a damper in series with the spring. Optimal design parameters have
been proposed in [9, 2]. Even with the damper element attached, the resulting frequency
band is still quite limited. Regardless of the limitations, tuned mass dampers are a widely
used solution for vibration problems.

Nonlinear tuned mass dampers have recently attracted research interest due to their
larger operational frequency band. Initially the research has focused on nonlinear stiffness
[1, 29, 17], but has since moved to nonlinear damping [25, 28, 24] and their combined use
[10]. Most of the research has been purely mathematical, where the source of nonlinearity
has not been specified. Several studies have proposed using shape memory materials[21]
and magneto-rheological fluids [16, 20] to achieve the nonlinearity. Researchers have
proposed nonlinear tuned mass dampers based on other phenomena, such as friction
[11, 23], fluid sloshing [5] and particle collisions [19, 18]. One method of incorporating
nonlinear stiffness and damping has been the use of wire rope springs.

Wire rope springs (WRS), (often also called wire rope isolators) have seen increased
research in the past years due to their nonlinear hysteretic behavior. The wire rope
spring is created by connecting two metal pieces together using steel wire rope, as shown
in Figure 1 a). There are endless possibilities for the design, such as wire rope diameter,
loop sizes and number of loops. Under dynamic loading, the strands inside the wire ropes
start to slide relative to each other, which dissipates energy and changes the stiffness
[30, 22, 13]. The relationship between the stiffness and damping to the vibration amplitude
is nonlinear [30], making the WRS a promising component for nonlinear tuned mass
damper. The hysteresis loop is unsymmetric, when the loading alternates between tension
and compression [4]. Previous research has proposed a TMD based on a straight wire rope
[3, 12], as well as a pendulum type TMD with wire rope spring [7, 8]. No research has
been proposed for a tuned mass damper, where the auxiliary mass is placed on top of
the WRSs as shown in Figure 1 b). However, there exists a patented solution [15]. Wire
rope spring based solutions are especially useful for applications where oil is not allowed
or when high temperature variations are expected.
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This paper presents a study on the dynamics of a wire rope tuned mass damper
based on wire rope springs, which has not been previously considered in the literature.
Linearized model for the wire rope spring proposed in [27] is used to simulate the steady
state response of two different systems. The calculated response is compared to undamped
system and system with a linear tuned mass damper of equal mass ratio. The results
show that nonlinear TMD can be advantageous when wider frequency band for damping
is required.

Methods

The wire rope tuned mass damper (WRTMD) in this study consists of an auxiliary mass,
placed on top of the wire rope springs as shown in Figure 1 b). The wire rope springs are
then attached onto the structure with problematic resonance. The auxiliary mass should
keep the wire rope springs under compression during normal operation. The following
section presents the modeling method for the wire rope springs, and the description of
the modeled systems.

Wire rope spring model

The steady state dynamics of the wire rope spring are modeled according to the method
proposed in [27]. This model uses an amplitude based linearization for the effective am-
plitude dependent stiffness and damping. The damping is modeled as complex stiffness,
which captures the rate independent damping phenomena under steady state conditions.
The model applies only for small displacements, where the hysteresis loop is on the com-
pressive side. With higher loads, a more sophisticated model accounting for the asym-
metric shape would be required. The mathematical model showed good agreement with
measurements for a base excitation type problem. This section details the mathematical
model used in this study.

To use the amplitude based linearization method, the effective stiffness and damping
values were identified from experiments. An amplitude controlled shaker test was used to
measure the hysteresis loops of the WRSs with different amplitudes for a certain preload
level. The preload was applied as mass placed on top of the wire rope springs. The exci-
tation frequency was kept below the natural frequency of the testing setup. An example
hysteresis loop at three different amplitudes is given in Figure 2 a). The nonlinearity
in hysteresis loops is due to two sources, which both arise from the wire rope internal
friction. Firstly, the cross-section of the wire is stiffer when the strands stick to each
other behaving almost as it was solid. Secondly, the friction dissipates energy. From the
hysteresis loops, the effective stiffness and loss energies were identified for each vibration
amplitude. These two quantities can be used to calculate the effective damping for the
WRS.

The effective stiffness keff of the WRS is obtained from the ends of the hysteresis loops.
A third order polynomial was fitted to the measured effective stiffness data, given below:

keff(xa) = ax3
a + bx2

a + cxa + d (1)

where xa is the vibration amplitude of the wire rope spring and a, b, c and d are the fitted
polynomial coefficients. The resulting curve used in this study is presented in Figure
3. The Figure shows that the effective stiffness decreases as the vibration amplitude
increases. The wire rope spring vibration amplitude xa is defined as the amplitude of
vibration between the degrees of freedom that are attached to the wire rope spring.
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Figure 2. Example hysteresis loop with multiple excitation amplitudes (a) and various excitation fre-
quencies (c), from [27].The middle figures (b) show the time signals used to create the hysteresis loops
in a). The preload for a single wire rope spring is 80N, meaning that the loops are completely on the
compressive side. The model parameters for the WRS dynamic model are obtained from these loops.
The effective stiffness is obtained from the maximum and minimum amplitudes (arrows in a), while the
loss energy is obtained from the area of the hysteresis loop. The figure a) shows that the effective stiffness
of the WRS decreases as the amplitude of vibration increases and that the response does not depend on
loading frequency. The plot in c) shows that the behavior does not depend on the excitation frequency.

Loss energy was obtained from the area of the hysteresis loops. The loss energy gives
the energy dissipated by the WRS during a single oscillation cycle. A piece-wise function
was fitted to the measured loss energy data, shown in the following equation

Wloss(xa) =

{
a1x

2
a + b1xa + c1, xa < xthreshold

b2xa + c2, xa ≥ xthreshold

, Wloss ≥ 0 (2)

where xa is the vibration amplitude, a1, b1, c1, b2 and c2 are coefficients for the poly-
nomials and xthreshold is a threshold amplitude where the polynomial function changes.
The assumption for this model is, that with very small amplitudes, material damping
dominates the energy loss, which is described with the second order term. The linear
term represents Coulomb friction. At some amplitude xthreshold, the Coulomb friction
becomes the dominant phenomena, and the square term vanishes. Since both linear and
square terms of the polynomial are based on physical energy loss phenomena, the values
of the coefficients must be positive, otherwise the terms would not contribute to energy
dissipation. The values for the parameters are found by fitting the energy loss equation
to the measured data. The resulting energy loss plot is shown in Figure 3.

The amplitude dependent loss factor is defined as the ratio between dissipated energy
and the elastic energy of the spring. The equation for the loss factor is

η(xa) =
Wloss(xa)

2keff(xa)x2
a

(3)

where keff is the effective stiffness of the WRS at given amplitude. The resulting graph for
the loss factor is shown in Figure 3. This loss factor can be directly used for the complex
stiffness term. The resulting equation of motion for the one degree of freedom wire rope
tuned mass damper is

mẍ+ keff(xa)(1 + iη(xa))x = f(t) (4)
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where m is the auxiliary mass used in the tuned mass damper, i is the imaginary unit
and f(t) is the excitation force. As per the steady-state assumption, the response x(t) is
defined as

x(t) = xae
i(ωt+ϕ) (5)

where ω is the frequency of the excitation, and ϕ is the phase. The equation of motion
can be directly inserted into the set of equation representing the whole vibrating system.

As the equation of motion for the WRS is nonlinear due to the response amplitude
dependent stiffness and damping terms, the solution requires iteration. The iteration is
scheme is given below:

1. Assume initial vibration amplitude for the wire rope spring xa, such as 0.1mm or
previous solution.

2. Calculate the values for keff and η using the previous xa.

3. Solve system response, and obtain new vibration amplitude xa for the wire rope
spring from the calculated response.

4. Repeat until vibration amplitude converges. In this study the convergence value
was set to 1µm.

5. If final amplitude is outside of the identification range, print a warning.

The equations of motion for a larger system with wire rope tuned mass damper is

Mẍ(t) +Cẋ(t) +K(x)x(t) = f(t) (6)

where M, C and K are the mass, damping and stiffness matrices, and x and f are
the displacement and force vectors. The stiffness matrix is nonlinear as it depends on
the displacement vector. For the case of 2 degree of freedom model (Figure 4 a)), the
equation of motion is[

m1 0
0 m2

]
ẍ+

[
c1 0
0 0

]
ẋ+

[
k1 + k(xa)(1 + iη(xa)) −k(xa)(1 + iη(xa))
−k(xa)(1 + iη(xa)) k(xa)(1 + iη(xa))

]
x =

[
f1
0

]
(7)

x =

[
x1e

iϕ1

x2e
iϕ2

]
eωt, f =

[
f1
0

]
eiωt (8)

where xj is the displacement amplitude, fj is the force magnitude, ϕj is the phase of
mass j and ω is the frequency of the response and forcing. The vibration amplitude xa is
calculated directly from the system response. In this case the amplitude of the wire rope
spring is

xa = |x1e
iϕ1 − x2e

iϕ2| (9)

The tuning frequency of the wire rope tuned mass damper depends on the amplitude
of vibration. This means that it can tune in to multiple resonance frequencies. The tuning
frequency is calculated with

wtuning(xa) = wn(xa)
√

1− ξ(xa)2 =

√
keff(xa)

m

√
1− (η(xa)/2)2 (10)
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Figure 3. The amplitude dependent stiffness keff, loss energy Wloss and loss factor η of the wire rope
spring as a function of vibration amplitude xa. The small discontinuity comes results from the loss energy
model changing mechanism at the threshold amplitude xthreshold. The red dots are the measured values
used to fit the parameters of the mathemtaical model.

Figure 4. Illustration of the two degree of freedom system with the wire rope tuned mass damper (a) and
with the linear tuned mass damper (b). The excitation is applied on the first degree of freedom (m1). In
the study, the response of both m1 and m2 are monitored.

System models

This section presents the systems used to investigate the performance of the wire rope
tuned mass damper. Three systems were selected, one with two degrees of freedom, and
two with four degrees of freedom. In all of these systems, one degree of freedom is used
for the tuned mass damper. The systems are illustrated in Figure 4 and Figure 5, and
the parameters are listed in Table 1 and Table 2. Two variations of the four DOF model
(Case A and Case B) are used, where the stiffness and damping values are altered. The
TMD is the same in both cases, to study the effect of TMD mistuning.

This study considers only forcing with constant amplitude regardless of the excitation
frequency. To study the effect of nonlinearity, it is necessary to consider multiple excitation
amplitudes. The excitation forces range between 100N to 500N, which is less than the
static load due to the TMD mass. For the two degree of freedom system, the natural
frequency of the primary mass is varied between 25Hz and 32Hz. The mass ratio between
the primary mass and the auxiliary mass is kept constant. In the four degree of freedom

Figure 5. Illustration of the four degree of freedom system with the wire rope tuned mass damper. The
excitation is applied on the first node. The fourth degree of freedom (m4) is the tuned mass damper. It
is not present in the undamped case. In the study, the response of m3 is monitored.
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Table 1. Model parameters for the two degree of freedom system illustrated in Figure 4. The mass ratio
between the TMD and the system is 0.2. The wire rope TMD has 12 wire rope springs.

System ωn (Hz) m1 (kg) k1 (MNm−1) c1 (kN sm−1)

25Hz 480 11.84 3.02
32Hz 480 19.40 3.86

Table 2. The system parameters for the four degree of freedom system illustrated in Figure 5. The fourth
degree of freedom is the linear tuned mass damper which is not present in all of the cases. The linear
tuned mass damper has been tuned for the Case A system which has lower stiffness values. The mass
ratio between the TMD and the system is 0.11. The wire rope TMD has 4 wire rope springs.

Parameter dof 1 dof 2 dof 3 dof 4

Mass (kg) 94 111 102 32
Stiffiness in Case A (MNm−1) 3.67 3.53 3.60 0.285
Stiffness in Case B (MNm−1) 8.77 8.43 8.60 0.285
Viscous damping in Case A (N sm−1) 600 600 600 603
Viscous damping in Case B (N sm−1) 600 600 600 603

model, the excitation force is 190N.
The performance of the wire rope tuned mass damper is compared to a linear tuned

mass damper with similar mass ratio. The wire rope tuned mass damper consists of
twelve WRSs placed in parallel. The values used for the WRS are given in Table 3. The
amplitude dependent tuning frequency of the wire rope tuned mass damper is calculated
using Equation 10 and is shown in Figure 6. Because the wire rope spring model has been
identified for a certain preload mass level, the auxiliary mass is always equal to the mass
used in the identification tests.

Results and discussion

In this section the simulation results for the systems under consideration are presented.
The steady state response of the two investigated systems was simulated. The effect of
linear and wire rope tuned mass damper was compared to the undamped system. This
section also highlights design aspects for a wire rope tuned mass damper applications.

Two degree of freedom model

The response of the two degree of freedom system was calculated with multiple excitation
forces and two different primary mass natural frequencies. The resulting responses for
the primary mass (m1) and the auxiliary mass (m2) are shown in Figure 7. The Figure
show that the maximum response of m1 is below 25 Hz (Figure 7 a) with the wire rope
TMD, while the maximum response with linear TMD is at frequencies higher than 25 Hz.

Table 3. Model parameters for the Wire rope spring used in the study. Parameters with indices belong
to loss energy model, while parameters without the indices belong to the stiffness model.

a1 b1 c1 b2 c2 xa a b c d
(Jm−3) (Jm−2) (Jm−1) (Jm−2) (Jm−1) (m) (Nm−4) (Nm−3) (Nm−2) (Nm−1)

1.50e+5 0 0.3e-3 79.4 -0.01 0.2e-3 -8.86e+15 6.56e+12 -1.92e+9 3.56e+5
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Figure 6. The tuning frequency of the wire rope tuned mass damper as a function of vibration amplitude.
The tuning frequency is calculated with equation 10. The tuning frequency is calculated with only the
auxiliary mass.

For the higher system natural frequency (Figure 7 b), the maximum peaks of both TMDs
are at frequencies over the natural frequency of 32Hz. WRTMD reduces the maximum
amplitude more with higher load levels, while the linear TMD dampens the vibrations
more with lower loads. The response of the linear systems is only amplified with increasing
load.

The increasing excitation force amplitude has a significant effect on the response of
the wire rope tuned mass damper. The Figure 7 shows a softening behavior, where the
response peak shifts to a lower frequency as the excitation amplitude increases. The
increase of loading from 100N to 500N shifts the response peaks by almost 3Hz. Similar
behavior has been observed in previous studies [3].

The results show that the WRTMD performs better as the excitation amplitude in-
creases. At the lowest investigated load level the vibration amplitudes of both m1 and
m2 are significantly higher with the WRTMD when compared to the linear TMD. The
difference in the responses between the two TMDs is decreased as the load level increases.
At the highest load level the WRTMD reduces the vibration of m1 for the system with
ωn = 25Hz, while for the system with ωn = 32Hz the linear TMD still performs bet-
ter. With higher frequencies the vibration amplitudes are also lower, which lead to less
damping in the wire rope springs. It should also be noted that the maximum amplitude
of the m2 in the WRTMD is smaller when compared to the linear TMD at higher loads.
This is due to the increased damping as the vibration amplitude of the wire rope spring
increases.

Four degree of freedom model

The response of the third mass in Case A of the four degree of freedom system is shown in
Figure 8 along with the mode shapes of the system without the TMD. The Figure shows
that the wire rope TMD can reduce the response at the two lowest natural frequencies.
The response of the third mode is slightly amplified. The linear tuned mass damper has
a significant effect on the lowest natural frequency, and only small effect on the second
mode.

The wide band damping capability was investigated by changing the system natural
frequencies upwards while keeping the tuned mass dampers the same. The resulting
response of Case B of the four degree of freedom model is shown in Figure 9 along with
the mode shapes of the system without the TMD. The Figure shows that the linear tuned
mass damper provides less damping for the first natural frequency, while the wire rope
tuned mass damper still provides good vibration attenuation. The passive nonlinearity
allows the damper to tune into multiple frequencies.
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Figure 7. The response of the primary mass (m1) and the auxiliary mass (m2) in the two degree of
freedom system (Figure 4). Two configurations of the system were analyzed, with difference being the
stiffness of the of the primary mass spring (k1). The different curves show the response of the system with
linearly increasing load amplitude (from 100N to 500N). The resonance frequency of the linear systems
stays constant, while the system with wire rope TMD shows a softening behavior. This means that the
increasing force amplitude decreases the resonance frequency, changing the shape of the response.

Figure 8. The response of the third mass in Case A of the four degree of freedom system (Figure 5, values
in Table 2, force = 190N). The linear tuned mass damper has been properly tuned to the first natural
frequency. The wire rope tuned mass damper effectively dampens both the first and second peaks. The
resonance peaks of the systems are highlighted with the arrows. Next to these arrows are the natural
frequencies and mode shapes of the system without the mass damper.
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Figure 9. The response of the third mass in Case B of the four degree of freedom system (Figure 5, values
in Table 2, force = 190N), where the first natural frequency has been shifted from 15Hz to 23Hz. The
second mode has shifted to 68Hz and third mode to 120Hz. The tuning frequency of the linear tuned
mass damper is 15Hz, showing limited damping performance. The wire rope tuned mass damper has
remained unchanged from the system in Figure 8, showing that even though the resonance frequency has
changed, the damping capability has not declined. The natural frequencies and mode shapes of a system
without the tuned mass damper are presented next to the arrows. Third mode is outside of the excitation
range.

Design process discussion

The design process for wire rope tuned mass damper is much more complicated than for a
linear tuned mass damper. For the linear TMD equations have been developed to give the
optimal stiffness and damping values for a certain mass ratio, which are easy to convert
into real components. On the contrary, the amplitude dependent stiffness and energy loss
curves are needed for each wire rope spring configuration. Currently there are no rules
that tell how changing WRS parameters will affect the stiffness and damping. Therefore,
the design needs to be done with a discrete set of identified WRS geometries and multiple
design studies need to be carried out to find the optimal design. Optimal configuration
for the system under consideration might not be available.

One of the main advantages of the wire rope tuned mass damper is its ability to dampen
resonances on a wide frequency band. By comparing the Figure 8 (Case A) and 9 (Case
B), it can be seen that the same wire rope tuned mass damper provides damping for both
systems, while the linear tuned mass damper struggles with Case B. This indicates that
the vibration suppression performance of the wire-rope spring TMD is to a certain degree
more robust in comparison to the linear TMD for varying system natural frequencies and
less susceptible to possible mistuning. This can be especially advantageous for systems
where the natural frequencies change with time, such as a paper winders [14, 26].

Another important aspect of tuned mass damper design is the placement of the
damper. It should be placed so that it is excited by the damped mode. Based on the
mode shapes presented in Figures 8 and 9, the lowest mode has the highest amplitude in
the third DOF. This is where the damper is located. This degree of freedom also has high
amplitude on the two other modes. The location of the damper is always a compromise
between the mathematical optimum and the constraints of the real world, as the damper
cannot necessarily be placed the desired location. The presented model allows for efficient
design study to find this optimum location.
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There are several challenges when designing wire rope tuned mass dampers. Firstly,
the mathematical model works only on the ranges where parameter identification has been
made. Therefore amplitudes larger than those used in identification are not allowable.
The mass of the WRTMD should not differ much from the preload mass used in the
wire rope spring identification process, as it has some impact on the stiffness and energy
loss curves [27]. Additionally, the load magnitude influences the damping capability of
the WRTMD as shown in Figure 7. This means that the damper design might require
modification if the excitation level changes. Finally, there is no published research on the
long-term effects of vibration to the dynamic properties of wire rope springs. The wire
surfaces wear due to friction, which over time changes the stiffness and damping of the
wire rope springs before breaking them completely. This would pose an excellent topic for
future research. Mechanical restrictior elements and preventive replacement of damaged
wire rope springs can be used to mitigate the risk of total failure.

Most of the WRS related problems could be solved by identifying more WRS configu-
rations or by researching methods to identify the parameters directly from the dimensions.
Improved data availability can be used to create design rules on how the dimensions of the
WRS affect the resulting stiffness and energy loss curves and therefore the performance
of the tune mass damper. Until this can be solved, the experience of the designer plays a
critical role on the performance.

Conclusion

This paper presented a simulation study on the use of wire rope springs based tuned mass
damper which have not been previously considered in the literature. The study showed
that the wire rope tuned mass damper can provide improved performance when compared
to the linear tuned mass damper, especially if there are multiple natural frequencies that
require damping or when the natural frequencies change. On the downside, the design
process required more complicated. Further research is needed to facilitate effective design
process.
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