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Summary  In this paper, we present a 2D mesomechanical model for describing concrete 
fracture behavior under dynamic loading. The aggregate-mortar mesostructure of concrete is 
explicitly described, while the interfacial transition zone is represented as a weak zone of finite 
elements around the aggregates. Concrete failure is described by a damage-viscoplasticity model 
based on the Drucker–Prager yield criterion and the Rankine criterion as the tensile cut-off. For 
the viscoplastic part of the model, the consistency approach is adopted. In the damage model, 
separate scalar damage variables are applied for tensile and compressive stress regimes. Uniaxial 
compression and tension tests are simulated as the numerical examples. The model holds some 
promise because it reproduces the experimental failure modes in tension and compression, and in 
dynamic Brazilian disc test, and predicts a realistic compressive-to-tensile strength ratio as well 
as the strain-rate sensitivity effect for concrete.   

Key words: mesoscale, concrete fracture, finite element method, damage-viscoplasticity 

Received: 16 October 2025. Accepted: 14 January 2025. Published online: 12 March 2025. 

Introduction 

Concrete, as the most important construction material, has attracted substantial amount 

of both experimental (see e.g. [1–4]) and numerical research (see e.g. [5–7]). At the 

numerical front, concrete research is advanced at three scales [8]: (1) Macroscale with 

homogenized properties; (2) Mesoscale at which the bi-phasic nature, i.e. the aggregate-

mortar as well as the interfacial transition zone (ITZ) between them, is explicitly 

described; (3) Microscale with sand particles and cement paste. Due to computational 

limitations, macroscale considerations are necessary at the structural level, e.g. a concrete 

dam. Microscale studies are also important when considering, e.g. the effect of water-to-

cement ratio on concrete mechanical properties [9]. Since the pioneering work by 

Roelfstra et al. [10], the mesoscales studies have become increasingly popular, as 

exemplified by [7–14] (note particularly the review papers by Zhang et al. [7] and 

Thilakarathna et al. [8]).  
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Mesomechanical modelling of concrete is crucial to correctly predict its fracture 

behavior. e.g. at the laboratory sample level. Mesoscale model studies provide valuable 

information on the effect of concrete mix on the macro-properties and the nonlinear 

behaviour. Moreover, the aggregates induce various fracture toughening effects, such as 

crack stopping, redirection and branching [15], which cannot be predicted with 

homogenized models. For these reasons, the mesomechanical modelling is also adopted 

in the present paper. 

There are basically two approaches to model cracks in computational mechanics, i.e. 

the continuum approach, with the finite element method (FEM) as the foremost 

representative, and discontinuum or particle approach, based on distinct elements or 

interacting particles. The latter is naturally more suitable to describe fracture and 

fragmentation of brittle materials [15]. However, particle methods are computationally 

intensive due to the required particle and contact tracking and searching procedures 

(particle neighbors are not fixed like in the continuum methods). Therefore, continuum 

approach based on the FEM and a damage-viscoplasticity model is chosen in the present 

study to describe concrete failure, which it can do only in the smeared sense when special 

enrichment techniques, such as the extended FEM or the embedded discontinuity FEM 

[9], are not used. This is not such a drawback because networks of adjacent fully damaged 

finite elements can describe crack-like behavior of concrete in a satisfactory manner when 

the deformations are small, and the mesh is dense (enough). 

Concrete is also a highly strain-rate sensitive material, which manifests as an increase 

in strength upon increasing loading rate accompanied with a transition from single crack-

to-multiple fragmentation [3,4]. The present approach incorporates the strain-rate 

sensitivity through viscoplasticity.  

The rest of this paper is structured as follows. First, the theory of the damage-

viscoplasticity model for concrete failure is briefly presented. Then, the method to 

generate concrete mesostructure is outlined, and, after that, the method is applied in 

numerical examples. More specifically, numerical uniaxial tension and compression tests 

are performed on the concrete samples. Finally, the dynamic Brazilian disc test is 

simulated.     

Damage-viscoplasticity model for concrete  

The material model for concrete, applied to both cement and aggregates, consists of the 

linear elastic part up to elastic limits in compression and tension after which softening 

stage due to failure follows. In the present model, the concrete material is isotropic but 

heterogeneous due to its bi-phasic nature. Moreover, the model is formulated within the 

small deformation framework, enabling the additive split of strain tensor into elastic and 

viscoplastic parts by 𝛆 = 𝛆e + 𝛆vp. 

The stress states leading to viscoplastic flow and damage are indicated by the 

Drucker–Prager (DP) criterion with the Modified Rankine (MR) criterion as a tensile cut-

off. Because the strength and stiffness degradation are taken to be governed by the 

damage model, perfectly viscoplastic behavior is assumed. The bi-surface yield criterion 

can then be written, along with rate dependent cohesion c and tensile strength 𝜎t, as 
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𝑓DP(𝝈, �̇�DP) = √𝐽2 + 𝛼DP𝐼1 − 𝑘DP𝑐(�̇�DP),  (1) 

𝑓MR(𝝈, �̇�MR) = √∑𝑖=1
3 ⟨𝜎𝑖⟩2 − 𝜎t(�̇�MR),  (2) 

𝑐(�̇�DP) = 𝑐0 + 𝑠DP�̇�DP,  𝜎t(�̇�MR) = 𝜎t0 + 𝑠MR�̇�MR, (3) 

�̇�𝑖 ≥ 0,    𝑓𝑖 ≤ 0,    �̇�𝑖𝑓𝑖 = 0.       (𝑖 = DP, MR) (4) 

 

The symbol meanings here are as follows: I1 and J2 are, respectively, the first and the 

second invariants of the stress tensor 𝝈 and its deviator (𝝈 − 1

3
tr(𝝈)); 𝑐0 and 𝜎t0 are the 

intact cohesion and tensile strength, respectively; �̇�DP, �̇�MR are the rates of the viscoplastic 

increments; 𝑠DP, 𝑠MR are constant viscosity moduli; i is the ith principal stress with the 

positive parts obtained through Macauley brackets in the MR criterion (2). The DP 

parameters, DP and kDP are expressed in terms of the friction angle  to match the 

uniaxial compressive strength: DP = 2sin/(3−sin) and kDP = 6cos/(3−sin). It is also 

worth to note that a more general definition is possible for rates of internal variables, i.e., 

instead of �̇�DP (similarly for �̇�MR),  one could use �̇�DP = �̇�DP𝑘(𝝈, 𝛘), where 𝑘 is a function 

of stress and some variables 𝛘. In the present case, 𝑘 ≡ 1, and thus �̇�DP ≡ �̇�DP.  Finally, 

Equations (4) specify the consistency conditions in the spirit of Wang et al. [16].  

The damage part has separate damage variables in tension and compression stress 

regimes by 

 

𝜔t(𝜀eqvt
vp

) = 𝐴t(1 − exp(−𝛽t𝜀eqvt
vp

)),   𝜔c(𝜀eqvc
vp

) = 𝐴c(1 − exp(−𝛽c𝜀eqvc
vp

)), (5) 

𝜀ėqvt
vp

= 1

3
〈tr(�̇�vp)〉,   𝜀ėqvc

vp
= √

2

3
�̇�vp: �̇�vp ,  �̇�vp = �̇�vp − 1

3
tr(�̇�vp), (6) 

�̇�vp = �̇�DP
𝜕𝑔DP

𝜕𝝈
+ �̇�MR

𝜕𝑓MR

𝜕𝝈
,        with  𝛽t = 𝜎t0ℎ𝑒/𝐺Ic, 𝛽𝑐 = 𝜎c0ℎ𝑒/𝐺IIc. (7) 

 

Here 𝑔DP(𝛔, �̇�DP) = √𝐽2 + 𝛽DP𝐼1 − 𝑘DP𝑐(�̇�DP) is the viscoplastic potential, with 𝛽DP 

being similar to 𝛼DP but defined with the dilation angle  instead of friction angle. In 

addition, Equations (5) define the tension and compression damage variables, with 

parameters 𝐴c, 𝐴t controlling the final values of the damage variables, i.e. the lower the 

values of these parameters, the higher the residual stress. Parameters 𝛽c, 𝛽t control the 

ductility of the post peak response. These latter ones are defined by the mode I and II 

fracture energies 𝐺Ic and 𝐺IIc. Moreover, 𝜎c0 = 2𝑐0 cos(𝜑) /(1 − sin (𝜑)) is the 

compressive strength. Furthermore, ℎ𝑒 is the characteristic length of a finite element, i.e. 

the softening scheme is element size insensitive. It is emphasized that no separate damage 

loading functions are needed in this model because the damage is driven by viscoplastic 

strain only. Thereby, the strain rate sensitivity of the viscoplasticity part naturally carries 

over to the damage part as well.    
The final component of the model specifies how damage variables operate on the 

stress tensor, i.e., the nominal-effective stress relation. The Lee & Fenves scheme [17] 

for the nominal-effective stress relation is chosen here: 

 

𝛔 = (1 − 𝑠c𝜔t)(1 − 𝑠t𝜔c)�̄�,  �̄� = 𝐂𝑒: (𝛆 − 𝛆vp), (8) 

𝑠t = 1 − 𝑤t𝑟(�̅�𝑖),   𝑠c = 1 − 𝑤c(1 − 𝑟(𝜎𝑖)),  0 ≤ 𝑤t,  𝑤c ≤ 1, (9) 



4 

 

𝑟(�̅�𝑖) = ∑𝑖=1
3 〈𝜎𝑖〉/∑𝑖=1

3 |�̅�𝑖|,  (10) 

 

with 𝐂𝑒 being the elastic stiffness tensor. The stiffness recovery scheme (8) and (9) 

accounts for the unilateral effects of damage (microcracks). Therein, the notations are as 

follows: 𝑠t and 𝑠c are stiffness recovery functions depending on the principal nominal 

stresses, 𝜎𝑖; Parameters 𝑤t and 𝑤c control the degree of recovery.   

The damage and viscoplasticity parts of the model are combined in the effective stress 

space allowing to separate the corresponding computations so that the stress return 

mapping is first performed in the effective principal stress space. Then, the damage 

variables are updated and, finally, the nominal stress is calculated [18]. The computational 

procedure for these steps is as follows. For a given element strain 𝛆𝑡+∆𝑡
𝑒 = 𝐁𝑒𝒖𝑡+Δ𝑡

𝑒 , do: 

1. Predict the trial elastic state: 

�̄�trial = 𝐂𝑒 ∶ (𝛆𝑡+𝛥𝑡 − 𝛆𝑡
vp

) → �̄�trial
pr

= [�̄�1
trial �̄�2

trial �̄�3
trial] 

                 𝑓DP
trial = 𝑓DP(�̄�trial

pr
, �̇�DP

𝑡 ), 𝑓MR
trial = 𝑓MR(�̄�trial

pr
, �̇�MR

𝑡 ) 

2. Check if the failure criteria are violated: If  max( 𝑓DP
trial, 𝑓MR

trial) > 0 then 

Perform Viscoplastic correction → �̄�𝑡+𝛥𝑡, 𝜺𝑡+𝛥𝑡
vp

 

Else elastic state correct  → EXIT   

3. Update the damage variables: 

𝜔t
𝑡+𝛥𝑡 = 𝑔t(𝜀eqvt

vp,𝑡+𝛥𝑡
),  𝜔c

𝑡+𝛥𝑡 = 𝑔c(𝜀eqvc
vp,𝑡+𝛥𝑡

) 

4. Calculate the nominal stress: 

𝝈𝑡+𝛥𝑡 = (1 − 𝑠c𝜔t
𝑡+𝛥𝑡)(1 − 𝑠t𝜔c

𝑡+𝛥𝑡)�̄�𝑡+𝛥𝑡 

In this algorithm, �̄�𝑖
trial is the ith principal stress, while 𝑔t and 𝑔c are the damage functions 

defined in Equation (5). 

Solution of global equations of motion 

As the present model is applied in transient dynamic applications involving 

contact/impact, the global finite element discretized equations of motion are solved 

explicitly in time. Applying the modified Euler method as the time integrator, the solution 

is proceeded in time as:    

𝐌�̈�𝑡 + 𝐟𝑡
int(𝐮𝑡, �̇�𝑡, 𝜔t, 𝜔c) = 𝐟𝑡

ext → �̈�𝑡,  (11) 

�̇�𝑡+Δ𝑡 = �̇�𝑡 + Δ𝑡�̈�𝑡,  (12) 

𝐮𝑡+Δ𝑡 = 𝐮𝑡 + Δ𝑡�̇�𝑡+Δ𝑡,  (13) 

𝐟𝑡
int = 𝐀𝑒=1

Nel ∫
Ωe𝐁u

e,T𝛔(𝐮𝑡, �̇�𝑡, 𝜔t, 𝜔c)dΩ,  (14) 

where M is the lumped mass matrix, 𝐟𝑡
int is the internal force vector, 𝐁u

e is the kinematic 

matrix, 𝐀 is the standard finite element assembly operator, 𝐟𝑡
ext is the external force 

vector, Δ𝑡 is the time step, and 𝐮𝑡 , �̇�𝑡, �̈�𝑡 are the displacement, velocity and acceleration 

vector, respectively.  
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Numerical concrete sample generation 

There are many sophisticated methods to generate realistic aggregate-mortar 

mesostructures of concrete [7,8]. In the present study, we developed a Matlab based code 

to generate 2D concrete mesostructures and to mesh them with linear triangle elements. 

The present method is based on the open-source Matlab-codes by Al-Rumaithi [19] and 

Matlab PDE Toolbox built-in functions, as shown in Figure 1.   

 

Figure 1. Flowchart of the numerical concrete sample generation (* see [19]). 

The method requires the special function Ellipses2Polygons because the Matlab 

built-in function descg, to decompose the constructive solid geometry description gd 

into minimal regions dl, fails to do it for ellipses but not for polygons. Figure 1 also 

illustrates the tensile strength distribution of each phase, when the strength of the ITZ is 

50 % from that of the mortar. This method has the limitation that the aggregates cannot 

intersect the sample edges. So, it can model only cast concrete samples, not a cut or 

machined (out of a larger piece of concrete) ones, at this stage of developments. Finally, 

the sample shape options are circle and rectangle. 
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Numerical examples 

Material and model parameters 

The material properties and model parameters used in the simulations are given in Table 

1. The mortar values are averages of the ranges given in www.engineeringtoolbox.com 

for Portland cement. Moreover, the aggregate values are valid for generic granite gravel.  

  
Table 1. Material properties and model parameter values used in simulations. 

Property/Parameter Mortar Aggregates ITZ Value  

 Value Value  Unit 

E (Young’s modulus) 27.5 60 27.5 GPa 

 (Poisson’s ratio) 0.2 0.17 0.2  

 (Material density) 2400 2400 2400 kg/m3 

t (Tensile strength) 5 11 2.5 MPa 

GIc (Mode I fracture energy) 0.02 0.04 0.02 N/m 

GIIc (Mode II fracture energy) 0.2 0.04 0.2 N/m 

c0 (Cohesion) 9 25 9 MPa 

sMR (Viscosity in tension)  0.005 0.005 0.005 MPas/m 

sDP (Viscosity in compression)  0.005 0.005 0.005 MPas/m 
At (Final value of damage) 0.98 0.98 0.98  
Ac (Final value of damage) 0.98 0.98 0.98  

 (Internal friction angle) 30 50 50  

 (Dilation angle) 5 5 5  
    

The values for viscosity moduli given in Table 1 are low test values that have negligible 

effect at very low strain rates. The effect of these moduli is that the higher their values, 

the higher the stresses at certain strain rates. Their values are to be adjusted by uniaxial 

tension and compression tests at the target strain rate.  

Uniaxial tension and compression tests  

The performance of the present method is now demonstrated in uniaxial tension and 

compression tests on numerical concrete. These are the crucial tests any predictive 

modelling code should be able to reproduce both in terms of the correct compressive to 

tensile strength ratio and macrofailure modes. The numerical concrete samples, i.e. their 

aggregate-mortar mesostructures, as well as an example of the finite element mesh are 

shown in Figure 2.   

     Figure 3 shows the theoretical Fuller’s curve and the simulated curves for the 

numerical samples. This curve represents a grading of aggregate particles resulting in 

optimum density and strength of the concrete mixture [20]. All the samples in Figure 2 

are generated with the same parameters, which are as follows: Aggregate class diameters 

[1 3/4 1/2 3/8 1/4]10 mm; Fuller's curve exponent  = 0.45; Aggregate shape distribution 

factor m = 3 (see [19,20]); Aggregate area ratio fagg = 0.6; Spacing factor between 

aggregates er = 0.1. Despite the same parameter values, each sample generated with the 

method differs in terms of the aggregate location and their orientation due to their 

randomness in the code.  
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Figure 2. Numerical concrete samples: Aggregate-mortar mesostructure represented in terms of 

tensile strength distribution, an example of the ITZ and the finite element mesh (consisting of 

17212 linear triangle elements) for Conc1. 

 

Figure 3. Theoretical and simulated Fuller’s curve for numerical concrete samples. 

The uniaxial tests are carried out by imposing constant boundary velocity at the upper 

edge of the sample, while the bottom edge is simply supported. A constant velocity of 

0.025 m/s, resulting in a strain rate of 0.25 s–1, is applied. The simulation results for the 

tensile test are shown in Figure 4. In each case, the predicted failure mode has two cracks 

initiating at the vertical edges of the sample and propagating horizontally towards the 

opposite edge. The vertical distance of the cracks varies so that the cracks coalesce only 

with Conc3. The predicted failure mode is the experimental transverse splitting with the 

double crack system. The corresponding stress-strain curves, which do not deviate much, 

show a tensile strength of 2.5 MPa for each sample. The stiffness determined from the 

first, linear part of the response is approximately 32 GPa.  
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Figure 4. Simulation results for uniaxial tension test: (a) Failure modes in terms of tensile damage 

distributions; (b) Corresponding average stress-strain curves. 

A notable feature in the stress-strain response is the pre-peak nonlinearity, which is 

not due to the constitutive model for the concrete because it is linear up to the tensile 

strength for each phase. The pre-peak nonlinearity is due to the heterogeneity of the 

mesostructure: the weak ITZ areas, surrounding each aggregate, start to fail first, which 

leads to the observed nonlinear pre-peak response. It can be argued that this is what 

happens in the experiments, i.e. microcracking events occur at weak spots all over the 

sample volume, and it is the degraded stiffness induced by microcracking that is reflected 

in the stress-strain curve, representing the sample net behavior, as nonlinear pre-peak 

response. It should also be stressed that it is misleading to call such pre-peak response 

“hardening”, when it has nothing to do with the real hardening phenomenon found in 

metals.   

Next, the uniaxial compression test is carried out to the concrete samples. The results 

are shown in Figure 5. The failure modes predicted with samples Conc1 and Conc2 

exhibit typical shear band with single crack for Conc2 and double crack system for Conc1. 

The corresponding stress-strain responses in Figure 5b, show mild pre-peak nonlinear 

part and then, after reaching the compressive strength of 26 MPa at the peak, drop 

abruptly. In drastic contrast, while the stress-strain responses are nearly identical for 

Conc1 and Conc2, Conc3 attests a compressive strength reaching almost 90 MPa. The 

corresponding failure mode is the axial tensile splitting with multiple cracks. This truly 

abnormal, unexpected behaviour is due to the aggregate structure, which prevents the 

shear band formation in this case. However, it is somewhat a “lucky strike” that this 

mesostructure, generated with the same parameters as those of Conc1 and Conc2, causes 

such a phenomenal effect. The predicted compressive/tensile strength ratio for Conc1 and 

Conc2 is typical 10 but for Conc3, it is abnormal 35. Possible additional sources for 

the behavior of the model with Conc3 are the 2D nature of the code and the underlying 

linear kinematics formulation. However, these issues are not further studied in the present 

paper. 
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Figure 5. Simulation results for uniaxial compression test: (a) Failure modes in terms of tensile 

and compressive damage distributions; (b) Corresponding average stress-strain curves. 

An additional concrete sample is generated to test the effect of higher aggregate-to-

mortar ratio. This concrete sample, Conc4, along with the simulation results are shown in 

Figure 6. In uniaxial tension, the sample with much higher aggregate-to-mortar ratio 

exhibits response initially similar to the samples above, but a higher tensile strength 

reaching almost 3.3 MPa. In contrast, the post-peak behavior (Figure 6d) is substantially 

more ductile first since much more tensile damaging takes place, especially at ITZ areas, 

see Figure 6b. Then, when enough damage is developed, the stress abruptly drops to zero. 

In compression, a notable strengthening effect is attested, as the maximum stress reaches 

87 MPa (Figure 6e). Moreover, the failure mode is the axial splitting with multiple cracks, 

because the dense aggregate structure prevents the shear band formation. Therefore, 

considering that at the lower aggregate-to-mortar ratio the transition of the failure mode 

from the shear banding to the axial splitting mode took place with one specimen, out of 

three, the (lower) ratio used above could be a threshold ratio, or close to it, beyond which 

this transition happens more often. However, more research is needed on this issue before 

more definitive conclusions can be made.  

A note on the limitations of the 2D mesoscale approach is in order here. The most 

obvious shortcoming is that a substantially different geometries can result from a single 

3D aggregate depending on the orientation and location of the 2D cut section (think about 

conic sections). A 2D model may thus result in different stress distributions and crack 

propagation patterns. Moreover, boundary conditions and interactions between the 

concrete phases are much more realistic in the 3D approach. The differences between the 

2D and 3D modelling was compared by Zhang et al. [21] by taking a representative cut 

from a 3D mesoscopic model. It was found that the 2D model overestimated the 

compressive strength of the sample by 18 % and the post-peak part of the stress-strain 

response was more brittle than that in 3D. The authors speculated that the previous feature 
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was partly because of the underlying plane strain assumption, while the latter was 

attributed to more complicated crack coalescence and branching in 3D. 

 

Figure 6. Simulation results for uniaxial tests (Conc4): (a) Aggregate-mortar mesostructure 

represented in terms of tensile strength distribution; (b) Tensile damage distribution after uniaxial 

tension test; (c) Tensile and compressive damage distribution after uniaxial compression test; (d) 

Average stress-strain curve in tension test; (e) Average stress-strain curve in compression test. 

Dynamic Brazilian disc test 

Brazilian disc (BD) test is a popular method to determine the tensile strength of brittle 

materials like rocks and concrete [22]. It is often touted that the direct tensile test is 

challenging to carry out adequately due to premature cracking at the grips. Hence, 

experimentalists tend to resort to Brazilian test, which is an indirect test based on the 

elasticity solution of a disc under diametral compression. However, the assumptions of 

Brazilian test are also challenging to fulfill because the crack initiation spot (more than) 

often offsets from the center and, thus, the indirect tensile strength value measured is too 

low [23].    

The dynamic version of the test, carried out with the Split Hopkinson Pressure Bar 

(SHPB) device [22], in contrast to the quasi-static, tend to overestimate the indirect 

dynamic tensile strength calculated as   

 

 𝜎t = 2𝑃/𝜋𝐿𝐷,  (15) 
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where P is the force measured in the experiment, with L and D being the length (thickness) 

and the diameter of the disc sample. In dynamic BD test based on the SHPB device, the 

disc is placed between two slender steel bars equipped with strain gages (see Figure 7). 

Then a striker hits the end of the incident bar and sends a compressive wave, which 

propagates along the bar and traverses through the sample into the transmitted bar while 

the sample is axially split or fragmented into debris depending on the striker velocity. 

This test, when based on Equation (15), usually overestimates the tensile strength because 

the force measured (P) increases even after the disc is split into two halves [24]. 

Furthermore, if the strain rate is too high, premature shear fractures occur at the contact 

areas resulting in imbalance of contact forces and invalid test results, because the 

“dynamic equilibrium” is lost. For this reason, pulse shapers are often used to smooth the 

stress wave. We conclude this critical discussion on Brazilian test by noting that in both 

the quasi-static and dynamic versions of the test, it is the narrow contact zone that is prone 

to premature failure of the disc material at the wrong place invalidating the results with 

respect to tensile strength.    

Putting these critical comments aside, we now attempt to simulate the dynamic BD 

test on a numerical concrete disc based on the modelling principle depicted in Figure 7. 

 

Figure 7. The modelling principle for DB test with SHPB device (Ab is the cross-sectional area of 

the bar). 

The impact of the striker is modelled as an external force applied at the end of the incident 

bar, which in turn, along with the transmitted bar, is described by 2-node bar elements. 

Moreover, the contact constraints are imposed between the disc and the bar ends, and the 

contact forces P1 and P2 are solved, with the method described in [25]. A sinusoidal stress 

pulse is applied with variable amplitude and a constant length in time of 320 s. Figure 8 

shows the numerical concrete sample, the FE mesh, and simulation results for the tensile 

damage and the contact forces P1 and P2 when the amplitude of the input stress pulse is 

20 MPa.  

The predicted failure mode, shown in Figure 8c, is the experimental axial splitting 

with few cracks, notably detouring the strong aggregate located close to the center of the 

disc. The corresponding contact forces, both exceeding 25 kN, show reasonable “dynamic 

equilibrium”. Thus, the indirect tensile strength given by Equation (15) is valid in this 

respect.  
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Figure 8. Simulation results for dynamic BD test (in = 20 MPa): (a) Aggregate-mortar 

mesostructure of the numerical concrete disc; (b) The FE mesh with 14830 elements; (c) Tensile 

damage distribution at the end of simulation; (d) Contact forces as a function of time. 

Moreover, the actual value, 6 MPa at the strain rate 1.24 s–1, seems to be in realistic 

bounds when compared to the experiments on mortar reported by Yang et al. [26]. They 

report indirect tensile strength ranging from 4.75 MPa to 5.0 MPa at rates from 0.97 s–1 

to 1.89 s–1. The quasi-static compressive strength for this mortar is 28.7 MPa, which is 

reasonably close to the compressive strength, 26.3 MPa, of present numerical concrete. 

The quasi-static indirect tensile strength for their mortar was 4.7 MPa, which means that 

the dynamic increase factor (DIC) is close to 1 at strain rate 1 s–1. 

Next, the incident pulse amplitude is increased to 50 MPa. The simulation results are 

shown in Figure 9. At a higher level of stress amplitude, resulting in strain rate 𝜀̇ =
2.6 s−1, the amount of tensile damage has increased considerably (Figure 9a). Some 

radial cracking can also be observed. Moreover, the contact forces are still quite similar 

(see Figure 9b), so that the “dynamic equilibrium” is preserved and, thus, a tensile 

strength of 8.4 MPa can be read from the curve in Figure 9c. The dynamic indirect 

strength increases 40 % when the strain rate increases 110 %. This prediction is in realistic 

bounds because, e.g., Yang et al [26] report  40 % increase in dynamic splitting (indirect 

tensile) strength for mortar when strain-rate increases from 1…2 s−1 to 3…4 s−1. It 

should, however, be mentioned that the strain-rate increase effect is substantially (almost 

50 %) stronger for concrete, i.e. mortar with aggregates, than for pure mortar, see Jin et 

al. [27]. In this respect, the present simulation results are also realistic.    
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Figure 9. Simulation results for dynamic BD test (in = 50 MPa): (a) Tensile damage distribution 

at the end of simulation; (b) Contact forces as a function of time; (c) Tensile stress as a function 

of time according to Equation (15). 

Conclusions 

A 2D mesomechanical method to model concrete failure under dynamic loading was 

developed in this paper. The Matlab-based code for concrete aggregate-mortar generation 

is restricted to convex polygonal aggregate shape. However, this is not a severe limitation 

because aggregates are mostly of this geometry. The concrete failure is described by a 

damage-viscoplasticity model, which cannot describe crack as a strong discontinuity but 

in the weak, smeared sense, as a localised deformation band. Nevertheless, the numerical 

simulations demonstrated that the present method predicts the salient features, i.e. the 

correct failure modes and the compressive-to-tensile strength ratio, under uniaxial tension 

and compression. Moreover, the simulations of dynamic Brazilian disc test demonstrated 

that the present model predicts realistic strain-rate effects for concrete. Furthermore, the 

numerical simulations of uniaxial tests suggest that the aggregate structure may have 

dramatic, unexpected effects, e.g. a threefold increase in compressive strength, on failure 

mode and compressive strength of concrete. However, a full 3D version of the present 

approach, presently under development, is needed to test whether such an anomaly is only 

a numerical 2D artefact. The 3D version would also solve the general shortcomings of 

the present 2D approach discussed above, namely the overestimation of the compressive 

strength and the post-peak brittleness of the stress-strain curve. 
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