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A metamodel-based design optimization scheme for
minimizing energy consumption of unconditioned
residential buildings considering passive features

Shrutismita Talukdar and Subhrajit Dutta1

Summary The demand for appliances and equipment has risen as a result of emerging tech-
nologies and increasing economic growth. The outcome is high level of energy consumption
worldwide, particularly in structure and infrastructure sectors. Among these sectors, residential
construction stands out as one of the primary energy consumers for infrastructure development.
Thus, to construct buildings that use net-zero or nearly-zero energy, architects and engineers
must prioritise energy-efficient planning and implementation. This paper aims to develop a
scheme to minimize the energy consumption of an unconditioned residential building based on
design optimization of passive architectural design variables. Here, a parametric model is de-
veloped by using four passive architectural design variables: orientation, window-to-wall ratio,
shading depth and shading angle, This generates a large number of options for the analysis of
the building’s energy consumption. A metamodel-based design optimisation strategy has been
implemented for a single-family, single-storey, unconditioned residential building in Guwahati
City, India, with the objective to minimize energy use. The results from the case study showed
that by optimizing the above-mentioned passive design strategies, the energy consumption of
the considered building is lower by 52% as compared to the reference design.
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Introduction

Amid global development, the extensive use of electricity significantly contributes to sub-
stantial primary energy consumption, elevated CO2 emissions, and global warming, with
buildings playing an important role, accounting for approximately 40% of primary energy
consumption in the USA and Europe, while around 30% in China, according to prior re-
search [1]. Recent works have focused on the various energy-saving technologies that are
being used all around the world to lessen the impact that buildings have on the environ-
ment. Among these methods, Net-Zero Energy Buildings (NZEB) or Nearly-Zero Energy
Buildings (nZEBs) are gaining popularity [1]. The concept of NZEB has gained broad
acceptance because of its ability to decrease carbon dioxide emissions and energy use in
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the buildings [2]. Similar to NZEB, the idea of nZEB has become increasingly popular
globally. Without a thorough, measurable, and widely recognised definition, NZEB runs
the risk of being implemented inadequately, which could reduce its efficacy in addressing
social, ethical, and environmental challenges [3]. Researchers have come up with a wide
range of different definitions for NZEB. Some researchers define net-zero energy building
as an all-encompassing strategy for lowering carbon dioxide emissions from the construc-
tion sector [1]. Another study defines NZEBs as structures that, when assessed at the
site where they were built, produce as much energy as they use in a year [4]. A study
suggests that each NZEB should be customised to its own environment to achieve maxi-
mum efficiency. Despite this evolution, it is critical that the goals and criteria of NZEB
models remain consistent [3]. Many aspects, including borders, measurements, and crite-
ria, have been recognised as crucial for a universally recognised framework defining nZEB
in years of intensive research, idea sharing, and debates [1]. nZEB can also be described
analytically, providing an alternative to the traditional understanding [1, 5].

nZEB = Supply − Demand ≥ 0 (1)

As shown in (1), if the boundary of the building zone do not change over time, the energy
balance should either be zero or positive, signifying that the energy input and output are
equal or greater [1]. In this context, the term ”energy” refers to operational energy, which
includes fuel, thermal energy, electricity and gas.

Figure 1 illustrates the various energy-efficient techniques used to create NZEBs or
nZEBs, including renewable energy, passive and active design techniques. The thermal
and electrical load of buildings is often reduced as a result of a well-implemented passive
design, which includes components like optimal orientation, a high-performance thermal
insulating envelope, effective airtightness, and efficient shading systems [1]. Therefore, a
focus on passive design methods has been given under this scheme.

Motivation and problem definition

A multi-objective optimisation using passive energy efficient features as design variables
was carried out to find the best solution that balances the life-cycle cost (LCC) of a
building, energy savings, and thermal comfort [6]. Incorporating and optimising passive
and active approaches during the early stages of building design is an improved approach
for implementing nZEBs. It is also recommended that the building’s energy performance
be tracked in real-time throughout the whole period of use [7]. A multi-objective optimi-
sation analysis was performed on a pre-existing system to assess its efficacy and inform
future design choices. In order to improve efficiency while decreasing lifecycle costs, a
genetic algorithm (GA) was implemented into a building simulation engine and passive
conservation variables were adjusted [8]. According to the results of a study, incorporat-
ing specific passive measures in the envelope of the building design during the planning,
construction, or retrofitting phase can significantly lower energy consumption (up to 33
per cent) without compromising occupant comfort, highlighting the impact of solar energy
and architectural elements like roof-to-wall thickness, window-to-wall ratio (WWR), and
window sizing [9]. Researchers investigated enhancing energy efficiency in architectural
design by integrating new information into model files, noting that Building Information
Modelling (BIM) enhances design outputs with simple technological tools, and evalu-
ated passive design strategies for Hong Kong’s residential structures considering climate
change implications [10]. The work developed a parametric BIM tool for LCC, examining
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Figure 1. Strategies to achieve NZEB/nZEB.

a UK business and home to analyse operational and embodied energy perspectives [11].
In another study, BIM was employed for energy-efficient upgrades in Amazonian school
classrooms, showcasing viability through 3D modelling and energy calculations [12]. The
evaluation of feasible passive design techniques for residential homes in the twenty-first
century involved utilising Givoni building bioclimatic charts, an adaptive comfort stan-
dard model, simulation-based sensitivity analyses, and a validated EnergyPlus model.
These tools were employed to assess the dynamic performance of passive design techniques
over time, considering changing climatic conditions [13]. Another study investigated two
significant 20th century domestic architecture cases, pioneers in parametrization, wherein
digital replication and analysis of analogue figures by the architects were performed using
contemporary parametric technologies [14]. The optimization strategy proposed by [15]
utilizes Rhinoceros’ parametric design to optimize the thermal load of a free-form build-
ing in the early design phase, demonstrating success in anticipating and enhancing heat
characteristics with different building shapes. [16] studied the vital design components of
passive solar office building envelopes in hot and humid climatic zones using a thorough
methodology that integrated data mining methods with parametric energy simulation. A
study concentrated on increasing single-family housing’s energy efficiency, lowering oper-
ational CO2 emissions, and attaining cost minimization. It notably looked at components
for on-site heat and energy generation as it evaluated numerous multi-objective optimi-
sation techniques [17]. The goal of a study was to improve the passive housing idea for
single-family structures in the Southern Brazilian region. The results showed a notable
improvement in thermal comfort and a significant decrease in the structures’ energy re-
quirements [18]. In another study, the thermal characteristics of the building, geometrical
factors, ratios, and additional passive cooling techniques like thermal-energy storage sys-
tems, evaporative cooling, night ventilation, solar gains, and cooling from night-time sky
radiation were all taken into account [19]. A simulation-based multi-criteria optimisation
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approach for NZEBs was developed by the researchers to evaluate the viability of cost-
effective design enhancements in numerous case studies spanning climate zones in Lebanon
and France [20]. In [21], a GA-based approach accounting for uncertainties during sizing
was presented for sizing systems in NZEBs, considering multi-criteria performance objec-
tives as constraints to minimize initial costs across five distinct systems. Environmental
research, identification of appropriate measurements, model construction, analysis, and
design judgement were all part of the procedure used to evaluate energy-efficient envelope
design techniques in another study [22]. A GA-based technique stated in [21] for scal-
ing systems in NZEBs integrated multi-criteria performance objectives as constraints to
minimize initial costs across five systems, while addressing uncertainties during the sizing
process. According to a study, a differential evolution system design approach for NZEBs
in Hong Kong addresses climate change by optimising building system proportions based
on local meteorological data to minimise LCC while satisfying user-defined performance
constraints like thermostatic comfort, energy balance, and grid interaction [23]. The work
provides a simplified energy analysis to assess how building orientation influences energy
savings, considering solar heat gain and local factors.

The current literature lacks a comprehensive exploration of the influence of passive
architectural design variables on energy consumption in unconditioned buildings, creating
a gap in applying optimization techniques for such buildings. Consequently, the present
work aims to address this by proposing a methodology to minimize energy consumption in
residential buildings through the optimization of passive architectural design variables. To
achieve this, a parametric model is created, incorporating four passive architectural design
variables: orientation, WWR, shading depth, and shading angle. As the parametric study
provides an extensive solution space, integrating it consistently and efficiently throughout
the design process, it is challenging due to the size of the design option sets. Therefore, a
metamodel-based design optimization approach is adopted. The model generates diverse
options for analysing energy consumption in buildings, with a focus on reducing energy
usage in a single-family, one-story unconditioned residential building.

Metamodel-based design optimization scheme for nZEB

During the early stages of a project, the designed workflow makes it possible to assess
various passive design possibilities quickly. This paper describes the simulation-based
workflow to minimise the energy use intensity (EUI) of a one-story single-family residential
house. In this study, the simulations for parametric modelling and energy analysis have
been carried out in Rhinoceros 3D Version 7, with Grasshopper along with the Honeybee
and Ladybug as the plugin [24], [25], [26], [27]. EUI is defined as the amount of energy
used annually per unit area, making it possible to compare energy consumption among
various buildings, regardless of how different they are typically sized [28]. The workflow
consists of five consecutive phases: building geometry and parametric modelling, energy
simulations, design of experiments (DoE), optimization and sensitivity analysis. The
framework to achieve a nZEB based on design optimization is shown in Figure 2.

Generating building energy models through parameterization

Through parametric analysis, it is possible to rapidly evaluate a large number of designs
in bulk processes. This method helps to explore across the design sets, identifying all
feasible parameter combinations for a specific objective, with parametric, generative, or
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algorithmic design aiming to offer a flexible method for describing and generating ge-
ometry through scripting [29], [30]. It involves creating linkages between geometry and
decision variables to enable a dynamic relationship between them [30]. Different parame-
ters affect the building’s energy performance. To conduct a parametric study, a model has
been developed that consists of the parameters to be modified and then generates a set of
alternative values for each variable. After the building model is developed in parametric
software, architectural design variables are then varied parametrically with number sliders
to lower energy consumption. Figure 3 shows the floor plan and perspective view of the
considered building.

A component is used to divide the surfaces of the zones in order to create matching
surfaces between adjacent surfaces. The appropriate distribution of heat across the sur-
faces is ensured at this stage, which is essential for accurately calculating conductive heat
flow in an energy simulation. In the next step, this component is linked to an element that
helps assign rooms in energy simulation softwares to single zones, and the rooms must
be a closed volume to ensure accurate volumetric calculations. In this process, the zone
program is defined, for example, ”Midrise apartment” and the zone status is set to be
conditioned or unconditioned. Also, the zone name is set to be ”Residential”, ”Commer-
cial”, etc. Next, it was ensured that adjoining surfaces were merged into a single surface
appropriately representing internal walls. The building model is now ready with exterior
walls, interior walls, roof and floor. At this stage of the workflow, the walls are ready for
window and shading device creation. The model is now ready for the energy simulations.

Energy simulations for the building energy models

The simulations were conducted over a period of January to December to capture sea-
sonal variations in energy performance. The analysis incorporated heat transfer processes
through conduction, convection, and radiation along with temperature, relative humidity,
and wind effects. These parameters are sourced from EPW files obtained through the
ASHRAE Global Climate Data repository and integrated through Ladybug and Honey-
bee plugins in Grasshopper to ensure location-specific and reliable weather data. In this
work, thermal comfort was addressed by utilising a reference comfort setpoint range (26.5–
29.5◦C, as per SP 41) based on the adaptive comfort model, which ensures acceptable
indoor temperatures under varying environmental conditions. The thermal performance
of the building envelope was defined using Honeybee within the Grasshopper for the given
climate zone. The U–values applied were 0.45 W/m2K for external walls, 0.30 W/m2K
for the roof, and 2.6 W/m2K for single-glazed windows, which reflect the typical values
for minimal insulation scenarios in unconditioned buildings. All envelope characteristics,
including material layers and thicknesses, were modeled in accordance with ASHRAE
standards and local construction practices. These values were consistently applied across
all simulations and are critical in assessing passive performance and energy demand under
parameterization. The performance indicator, Energy Use Intensity (EUI) in kWh/m2, is
evaluated for all design possibilities. Parametric modelling software, enhanced by various
plugins, is used to improve simulation precision and detail. After generating the building
model, the energy model is exported to simulation software where weather data in EPW
format was imported to accurately evaluate energy performance for the specific location.
The energy simulation is set to record data for the entire analysis period, identifying the
month with the highest energy consumption and providing insights into the building’s
energy use. Lower values of EUI indicates improved energy performance [28].
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Utilizing metamodeling for easier, accurate, and efficient solutions sets

While the parametric study offers an extensive and complete solution space, the size of
the design option space makes it difficult to integrate it throughout the design process
consistently and efficiently. The complex computational analysis is essential to derive
the response due to the implicit nature of the precise relationship between the response
and a set of input variables. The use of a metamodel, commonly referred to as RSM
(Response Surface Methodology), which is a statistical approximation of the relationship,
is a simple but efficient approach. With this strategy, the computing process is made
easier as the response is estimated as a function of the input variables. The Design
of Experiments (DoE) approach offers the essential framework for this crucial stage of
Response Surface Methodology (RSM) [31]. Using this approach, computation becomes
easier because the response is estimated as a function of the input variables. The ranges
must be large enough to encompass all possible parameter spaces while being constrained
enough to allow for simple alignment of the response surfaces with the true response
using regression. DoE methods such as Full Factorial Design (FFD), Central Composite
Design (CCD), Box-Behnken design (BBD), Space-Filling design (SFD), and Taguchi’s
orthogonal arrays (TA) can be used for this purpose [31]. A Central Composite Design
(CCD) within the framework of Response Surface Methodology (RSM) is employed in the
study to optimize the experimental design. CCD is chosen for its efficiency in exploring
the response surface with a balanced number of simulations. A total of 25 simulations
is conducted, comprising factorial, axial, and centre points. These simulations provided
Energy Use Intensity (EUI) values, effectively showing the impact of the four architectural
design variables on energy consumption.

Statistical validation must be done to evaluate the regression model’s applicability.
The accuracy and appropriateness of the model can be checked using several statistical
indicators, such as the coefficient of determination (R2), adjusted R2 (RA)2, average
absolute error (%AvgErr), and root mean square error (%RMSE). The R2 and (RA)2

values should be close to 100%, showing a significant level of statistical significance, to
guarantee the model’s adequacy. On the other hand, optimal performance is indicated
by average error (%AvgErr) and root mean square error (%RMSE) values close to zero
[31]. RMSE is adopted for this work due to its ability to quantify the average magnitude
of error between predicted and actual values, providing a comprehensive assessment of
model performance while incorporating all data points, thus offering a robust evaluation
of predictive accuracy compared to other statistical methods.

Design optimization for most optimum nZEB

In this work, DoE is adopted along with optimisation using GA. It helps to get accurate
results in less duration of time. The GA is regarded as a potent tool in the optimisation
field since it explores and searches for the most optimal outcome using a variety of genetic
operations like selection, crossover, mutation, and more [32]. It efficiently explored the
design space, identifying optimal configurations while considering all variables simultane-
ously including a population size of 100, a 100% crossover rate, a 2% mutation rate, and
100 child solutions, enabling precise optimization. Here, the optimization process aims at
reducing the total energy consumption of the building which helps to attain and analyse
the optimal results. To solve optimization issues, there are several algorithms which are
capable of solving problems that are either continuous or discrete, with or without con-
straints.
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Let f denote the objective function representing the total energy consumption to be
minimized. The architectural design variables are denoted as follows:
o: Orientation.
r : Window-to-wall ratio (WWR).
d : Shading depth.
a: Shading angle.
The optimization problem can be formulated as follows:

minimize: f(o, r, d, a)

subject to: o ∈ [0, 360]

r ∈ [0.05, 0.7] (2)

d ∈ [0.1, 0.75]

a ∈ [0, 60]

The main goal is to minimize the total energy consumption of the building, represented
by the objective function f in (2). In the process of optimisation using GA, the lower
bound for the architectural design variables is set to be 0, 0.050, 0.100 and 0 respectively
while the upper bound is set to be 360, 0.700, 0.750 and 60 respectively. This work do not
consider any functional constraint during the optimization process. Finally, a fine-tuning
dataset was created to evaluate if the achieved result from the optimization was the most
optimum and the result was found to be satisfactory.

Sensitivity analysis to identify the critical architectural design variable

Sensitivity analysis determines how each architectural design variable affects overall per-
formance. Three major types of sensitivity analysis can be categorised as screening, local
and global sensitivity analysis. This work focuses on screening. Screening is an economi-
cal way of identifying and ranking the design elements that most affect output variation
(e.g., energy performance) [33]. ANOVA (Analysis of Variance) is employed in the study
to assess the significance of individual architectural design variables and their interac-
tions in influencing energy consumption. This method allows to evaluate how changes in
each architectural design variable affect the overall performance of the building. ANOVA
provides statistical insights into the relative importance of each variable by comparing
the variance in energy consumption due to changes in the design parameters. Through
this process, the variables are ranked based on their impact on the output, that allows to
identify the most significant factors. Interaction effects between variables are also exam-
ined, revealing how combinations of design parameters influence energy consumption in
ways that individual parameters alone may not. ANOVA, is used to quantify the effects
of each architectural design variable and its interactions, ensuring a more comprehensive
understanding of the factors driving energy performance.

A case-study building

Site location

Located at 26.18◦N and 91.76◦E, Guwahati is a rapidly developing metropolitan city in
the Indian state of Assam. The city is designated as a Climate Zone warm and humid.
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Except for the dry winter season, the average humidity in Guwahati is constantly high,
frequently topping 80%. May-June is the hottest month of the year, with temperatures
typically reaching their highest point. Winter lasts from November to February, whereas
monsoon season begins in June and lasts until September [34].

Building description

This study considers an unconditioned small single-family residential building as a case
study building with a gross floor area of 59.85 m2 in Guwahati, Assam. Unconditioned
building here refers to a building without any mechanical heating, ventilation and air-
conditioning systems. The one-story rectangular building considered here has two bed-
rooms (3.96 m x 3.65 m) and (4.26 m x 3.65 m) respectively, one kitchen (2.43 m x 2.74
m), one hall/dining room (5.48 m x 4.56 m) and a bathroom (2.74 m x 2.13 m). The floor
height of the building is 10 m. The height of the window is fixed at 1.65 m with a sill
height of 1 m as per commonly adopted architectural plans in Guwahati city. Although
a small single-story building is considered as a case-study model for this study, the same
workflow can be followed for any other type of building such as a multi-storied building
or an unsymmetric building. In the present study, the windows were created only on the
exterior walls by varying the WWR. WWR of the interior walls are not considered in this
study because the solar gain received by the building is mainly due to the exterior open-
ings in the exterior walls as the total solar gain plays an important role in evaluating the
building’s energy performance. Adjustable WWR and external shades with variable shad-
ing depth and angle, alongside adjustable building orientation, facilitated with number
sliders.

Energy performance results and discussion

Energy performance analysis was conducted for a reference residential building with large
openings, no shading devices, and an orientation of 0◦, resulting in a total energy consump-
tion of 379.95 kWh. For another random set of architectural design variables, including
an orientation of 180◦, a WWR of 40 %, a shading depth of 0.425 m, and a shading angle
of 0◦, the total energy consumption was found to be 247.17 kWh. After optimization
using the GA, the most optimal configuration was achieved with an orientation of 180◦, a
WWR of 5 %, a shading depth of 0.600 m, and a shading angle of 38◦, as shown in Figure
4. At these values of the architectural design variable, the total energy consumption of
the residential building is 164.65 kWh as shown in Figure 5. While using the same val-
ues of the architectural design variables in energy simulation software, the total energy
consumption of the building is found to be 182.39 kWh.

In this work, the RMSE % calculated is 9.29 % and R2 is 0.9781 which states that
the metamodel created is precisely predicted and the analysis is based on dataset consist-
ing of 25 samples. Figure 6 shows the validation process, with the Y-axis representing
actual data obtained from the simulation tool and the X-axis indicating predicted data
derived from the metamodel. The 9.29 % RMSE achieved in this study reflects the aver-
age deviation between predicted and actual values, quantifying the metamodel’s accuracy
predictively. RMSE values below 10 % are typically considered acceptable for design opti-
mization problems, indicating high-quality accuracy. In this case, the 9.29 % RMSE falls
within the commonly reported range of 5-15 % for metamodeling studies, demonstrating
the metamodel’s robustness and suitability for evaluating architectural design variables
[35]. The total gross floor area of the considered building is 59.85 m2. Therefore, the
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achieved annual EUI of the considered building is 3.04 kWh/m2. From the energy perfor-
mance simulations, the total energy consumption of the reference building is found to be
379.95 kWh and for the same building with achieved optimum architectural design vari-
ables is 182.39 kWh. The percentage saving of total energy consumption of the building
with optimum architectural design variables is 51.99%. The total energy consumption is
measured in kWh which is the sum of the energy consumed from sources of that building
such as lighting, electrical equipments, hot water, people gain and solar gain. The energy
consumption of the single-family residential building from different sources of energy is
shown in Figure 7. The energy consumption values in Figure 7 were calculated as lighting
was estimated using a lighting power density of 5–8 W/m2, electrical equipments accounts
for plug loads from residential appliances (e.g., refrigerators, televisions) based on typical
usage patterns, hot water usage was derived from assumptions about daily water usage
and heating energy requirements, following regional standards, people gain reflects heat
generated by occupants, calculated using metabolic rates (70â€“100 W/person) and occu-
pancy schedules, and solar gain was determined through thermal simulations, considering
solar radiation, glazing properties, and shading devices. Finally, the buildingâ€™s EUI
value is validated from the previous literature. According to the previous literature, it is
seen that according to passive house standard, the EUI of passive building has to be lower
than 15 kWh/m2 annually [7, 36]. In this paper, it is seen that for a small residential house
with a floor area of 59.85 m2 the achieved EUI is 3.04 kWh/m2 annually which is much
lower than 15 kWh/m2. In addition to the simulation analysis, a survey was conducted to
compare the energy consumption of real buildings in Guwahati with that of the simulated
building, using electricity bill data from the Assam Power Distribution Company Limited
(APDCL). As per the survey, the results showed a 7% higher energy consumption in the
real buildings compared to the simulated buildings, which suggests that the simulation is
reasonably accurate. Therefore, it can be stated that the considered building in Guwahati
city is the achieved nZEB. At this stage of the scheme, statistical software is being used
for screening to identify the primary factor influencing the building’s overall performance.

The ANOVA table for the regression model is shown in Table 1. ANOVA results as
shown in Table 1 confirm WWR as the most significant factor (F = 174.52, p < 0.001),
with shading depth also significant (p = 0.006). Orientation and shading angle show
less statistical significance (p > 0.05), supporting their minor influence observed in the
regression model. This validates the regression structure of the model and highlights
key variables for the design optimization. The metamodel obtained through DOE is
a second-order polynomial equation. Table 2 shows the derived values resulting from
varying a single architectural design variable while maintaining the constancy of all other
architectural design variables.

The interactions between two architectural design variables were examined using the
ANOVA (Analysis of Variance) experiment. ANOVA is used to assess the significant im-
pact of individual parameters on experimental outcomes, allowing for the identification
and quantification of the relative importance of each design parameter in influencing the
results [37]. Every time an architectural design variable interacts with WWR, as shown
in Tables 3, 4, 5, and 6, the energy consumption is minimized, highlighting WWR’s sig-
nificantly larger impact on reducing energy consumption in buildings compared to other
passive design factors. While all architectural design variables are considered important,
certain interactions, such as the combination of orientation with shading depth (as shown
in Table 5), result in minimal changes, denoted by ’–’, indicating orientation’s lesser sig-
nificance relative to other architectural design variables. The regression model derived
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from the response surface methodology (RSM) is presented in uncoded units, incorporat-
ing all linear, quadratic, and two-way interaction terms for the four architectural design
variables: orientation (o), window-to-wall ratio (r), shading depth (d), and shading angle
(a). The complete equation as shown in Equation 3 predicts energy consumption (E)
as a second-order polynomial. Among the design variables, WWR and its square term
show the highest positive coefficients, confirming its dominant role in reducing energy
consumption. The interaction between WWR and shading depth also contributes signif-
icantly, as it is reflected by a large negative coefficient. In contrast, the terms involving
orientation and shading angle show negligible values, indicating limited influence within
the studied range. This full formulation ensures that the regression model accounts for
all relevant effects, supporting both statistical validity and predictive robustness. An
ANOVA analysis can further quantify the statistical importance of these terms, showing
their contributions to energy consumption. This ensures that the model captures all sig-
nificant effects, including interactions and nonlinearities, ensuring the included terms are
adequate to achieve a high level of predictive accuracy.

E = 173.3− 0.2044 o+ 272.6 r − 1.3 d− 0.023 a

+ 0.000568 o2 + 37.4 r2 + 19.7 d2 + 0.00326 a2

+ 0.0000 o · r + 0.0000 o · d+ 0.000000 o · a
− 133.9 r · d− 0.429 r · a− 0.407 d · a

(3)

Table 1. ANOVA table for the regression model

Source DF Adj SS Adj MS F-Value P-Value
Orientation 2 862 431.1 1.48 0.256
WWR 2 101407 50703.4 174.52 0.000
Shading depth 2 4201 2100.3 7.23 0.006
Shading angle 2 443 221.7 0.76 0.483
Error 16 4649 290.5

Table 2. Main effect of energy consumption on individual variable

Orientation
(in deg.)

WWR Shading
Depth

Shading
Angle

Energy Con-
sumption
(kWh)

0 - - - 262.661
180 - - - 238.85
360 - - - 262.661
- 0.050 - - 186.012
- 0.375 - - 242.979
- 0.700 - - 336.099
- - 0.100 - 276.104
- - 0.425 - 243.511
- - 0.750 - 245.592
- - - 0 265.781
- - - 30 243.269
- - - 60 256.104
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Table 3. Interaction of orientation with other variables for energy consumption

Orientation
(in deg.)

WWR Shading
Depth

Shading
Angle

Energy Consump-
tion (kWh)

0 0.050 - - 186.385
0 0.375 - - 254.600
0 0.700 - - 340.952
180 0.050 - - 183.030
180 0.375 - - 238.330
180 0.700 - - 297.370
360 0.050 - - 186.385
360 0.375 - - 254.600
360 0.700 - - 340.952
0 - 0.100 - 279.195
0 - 0.425 - 254.600
0 - 0.750 - 248.142
180 - 0.100 - 251.380
180 - 0.425 - 239.076
180 - 0.750 - 225.190
360 - 0.100 - 279.195
360 - 0.425 - 254.600
360 - 0.750 - 248.142
0 - - 0 268.647
0 - - 30 254.600
0 - - 60 258.690
180 - - 0 242.850
180 - - 30 238.736
180 - - 60 235.420
360 - - 0 268.647
360 - - 30 258.690
360 - - 60 254.600
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Figure 2. Scheme to achieve a nZEB based on design optimization.
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Figure 3. Floor plan and perspective view of a single-family residential house.

Figure 4. The single-family residential building with optimum architectural design variables.
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Figure 5. Total energy consumption of the building from Optimisation.

Figure 6. Validation of the metamodel.
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Figure 7. Energy consumption from different energy sources.
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Table 4. Interaction of WWR with other variables for energy consumption

Orientation
(in deg.)

WWR Shading
Depth

Shading
Angle

Energy Consump-
tion (kWh)

0 0.050 - - -
180 0.050 - - 183.030
360 0.050 - - 186.385
0 0.375 - - -
180 0.375 - - 238.330
360 0.375 - - 254.600
0 0.700 - - -
180 0.700 - - 297.270
360 0.700 - - 340.952
- 0.050 0.100 - 183.005
- 0.050 0.425 - 187.765
- 0.050 0.750 - 183.030
- 0.375 0.100 - 251.380
- 0.375 0.425 - 244.856
- 0.375 0.750 - 225.190
- 0.700 0.100 - 370.625
- 0.700 0.425 - 297.270
- 0.700 0.750 - 311.28
- 0.050 - 0 183.033
- 0.050 - 30 183.030
- 0.050 - 60 185.585
- 0.375 - 0 244.516
- 0.375 - 30 244.516
- 0.375 - 60 235.420
- 0.700 - 0 350.110
- 0.700 - 30 297.270
- 0.700 - 60 331.795
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Table 5. Interaction of shading depth with other variables for energy consumption

Orientation
(in deg.)

WWR Shading
Depth

Shading
Angle

Energy Consump-
tion (kWh)

0 - 0.100 - -
180 - 0.100 - 251.380
360 - 0.100 - 279.195
0 - 0.425 - -
180 - 0.425 - 239.076
360 - 0.425 - 254.600
0 - 0.750 - -
180 - 0.750 - 225.1900
360 - 0.750 - 248.142
- 0.05 0.100 - 187.765
- 0.375 0.100 - 251.380
- 0.7 0.100 - 370.625
- 0.05 0.425 - 183.030
- 0.375 0.425 - 244.856
- 0.7 0.425 - 297.270
- 0.05 0.750 - 185.005
- 0.375 0.750 - 225.190
- 0.7 0.750 - 311.280
- - 0.100 0 278.180
- - 0.100 30 251.380
- - 0.100 60 278.180
- - 0.425 0 245.262
- - 0.425 30 245.262
- - 0.425 60 235.420
- - 0.750 0 257.085
- - 0.750 30 225.190
- - 0.750 60 239.200
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Table 6. Interaction of shading angle with other variables for energy consumption

Orientation
(in deg.)

WWR Shading
Depth

Shading
Angle

Energy Consump-
tion (kWh)

0 - - 0 -
180 - - 0 242.850
360 - - 0 268.647
0 - - 30 -
180 - - 30 238.736
360 - - 30 254.600
0 - - 60 -
180 - - 60 235.420
360 - - 60 258.690
- 0.050 - 0 187.185
- 0.375 - 0 242.850
- 0.700 - 0 350.110
- 0.050 - 30 183.030
- 0.375 - 30 244.516
- 0.700 - 30 297.270
- 0.050 - 60 185.585
- 0.375 - 60 235.420
- 0.700 - 60 331.795
- - 0.100 0 280.210
- - 0.425 0 242.850
- - 0.750 0 257.085
- - 0.100 30 251.380
- - 0.425 30 245.262
- - 0.750 30 225.190
- - 0.100 60 278.180
- - 0.425 60 235.420
- - 0.750 60 239.200
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Concluding remarks

Several researchers have looked into different ways to reduce building energy use and get
towards NZEBs or nZEBs. However, these studies often lack a deep understanding of the
design sets concerning the different stages of architectural design. Therefore, in this work,
a parametric scheme has been developed to evaluate the total energy consumption and
annual energy use intensity of a building. This scheme also deals with achieving the most
optimum nearly-zero energy building with a very low EUI for a single-family one-story
residential house. The proposed scheme has been implemented to a building situated in
Guwahati, Assam.

The main outcomes of the proposed scheme are as follows:

• Based on a comprehensive literature review on passive design strategies, orientation,
WWR, shading depth and shading angle are adopted for this work for their ease of
acceptance by building owners and early design phase integration.

• The study incorporates parameterization, but due to the extensive number of runs
involved in the process, metamodeling is employed as an alternative approach with
an RMSE to be 9.29 %

• The total energy consumption of the reference building is found to be 379.95 kWh
and that of the building with proposed architectural design variables is found to be
164.65 kWh.

• GA technique of optimization is carried out in the study which gives the most
optimum architectural design variables as 180◦ orientation, 5%WWR, 0.6 m shading
depth and 38◦ shading angle.

• Sensitivity analysis is ircarried out in the study that shows an extensive variation
in the building’s total energy consumption with a little change in WWR.

The scheme and integrated approach proposed in this study show applicability across
various building types and climate zones. In this study, the methodology is implemented
on an unconditioned single-story residential building, resulting in a favourable total energy
consumption value based on the chosen architectural design variables. However, extending
the application to a multi-story building could introduce additional complexities. One of
the limitations of the study is that it excludes HVAC systems and thermal comfort of the
occupant, which are important for a comprehensive understanding of energy consumption.
Incorporating these factors for a more holistic analysis may be a future approach.
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