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Vaults in snow constructions  

Esko Järvenpää1, Antti H. Niemi and Matti-Esko Järvenpää 

Summary  The article discusses the principles of arch design as they apply to snow vaults and 
presents different types such as parabolic, catenary, circular and constant stress. The parabolic 
momentless arch requires a constant vertical load throughout the span, resulting in a decreasing 
snow thickness from the crown to the base. In contrast, the catenary arch is formed by an inverted 
hanging chain, maintaining a uniform snow thickness throughout the structure, governed by a 
hyperbolic cosine function. The shape of the constant stress standalone arch is determined by the 
unit weight and the compressive stress, described by a logarithmic cosine function. In comparing 
snow arches, the article asserts the superiority of the constant stress form over the catenary and 
parabolic forms, highlighting its ability to span greater distances. Despite its advantages, the 
constant stress form has not yet found application in the construction of snow vaults. In addition, 
snow vaults are subject to significant deformation and require regular checks and recalculations 
throughout their life to ensure structural integrity. 
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Introduction 

In the design of snow structures, achieving a compression stress structure is both a 

realistic and attainable goal. In Finland, the RIL 218-2001 guideline provides a pragmatic 

approach to achieving this objective. The guideline requires the performance of static 

calculations for snow structures, with simplified instructions provided for those that have 

not undergone separate structural calculations [1]. The Lapland University of Applied 

Sciences has released a practical guide for the design of snow and ice structures based on 

field tests [2]. The guide is intended for designers and authorities responsible for 

implementing snow structures. This article provides further information that may indicate 

additions to the published documents. 

    To ensure a cross-section without tensile stress in the arch, the thrust line must be 

located in the middle third of the arch rib cross-section. The thrust line theory is a 

historically familiar concept as a design principle for stone and concrete vaults. It has 

http://rakenteidenmekaniikka.journal.fi/
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been assumed that compressive strength is not critical to the load-bearing capacity of the 

vault in stone structures [3]. However, this assumption does not hold true for snow 

structures. 

    When designing and constructing snow and ice structures, it is important to ensure that 

the thrust line runs along the axis of gravity of the structure. The moment-free form can 

only be achieved for permanent loads, as all other variable loads impose bending stresses. 

    In snow structures, the primary load is the weight of the snow. Therefore, the emphasis 

is on designing the shape. The magnitude of the permanent load in snow structures can 

be monitored, and if necessary, corrected to match the optimal shape. 

    Research has found that the parabolic shape is the most efficient in terms of material 

flow when supporting an evenly distributed vertical load between two support points [4]. 

The arch is then compressed centrally. The compression stress is lowest for the parabolic 

moment-free standalone arch at its base when the span length to height ratio l/h is 4. 

    Robert Hooke first published the principle of the catenary arch in 1675 [5]. He 

recognized that the arch was not a parabola but was unable to determine its mathematical 

solution [6]. The equation for the shape of the arch was published in 1691, after the 

development of differential and integral calculus [7], [8], [9]. This study shows that for a 

standalone catenary arch, the lowest compressive stress at the base is obtained when the 

rise ratio is 2.96. 

    The arch can be designed to maintain a constant compressive stress throughout the 

structure. An analytical solution for this type of arch has been derived [10], [11]. The 

design of arched structures has only been studied in recent years [12]. 

    The constant stress shape allows for much longer spans than the parabola or the 

catenary [13]. The low compressive stress of the constant stress arch is a significant 

advantage for snow vault structures. 

    The circular shape is suitable for compressive loads, but not for vertical loads [14]. If 

you want to construct an independent circular vault with no moment, you will need to 

increase the thickness of the vault as you increase its height. Only with flat arch shapes is 

the circular shape of the vault a viable option. It is important to note that the circular shape 

is not included in the comparison calculations between the vaults in this study. 

    The shape of the momentless arch does not precisely follow the above shape along the 

centroidal axis. The arch rib thickness and cross-sectional curvature affect the transfer of 

the centre of gravity above the central axis. This is because the upper soffit of the arch is 

longer than the lower soffit [15]. This article will not discuss this topic further. 

    The inner sofit of the vault does not have the same shape as the shape according to the 

axis of gravity, which affects the shape of the vault form due to the thickness of snow 

structures in cross-section. 

    Snow and ice are frequently used as temporary building materials in cold regions, 

particularly in popular tourist destinations. The traditional form of snow structure used in 

Greenland and Alaska is the igloo [16]. The annual snow sculpture festival in Harbin, 

China is likely the largest tourist event in the world. In Finland, snow structures are built 

annually in Kemi and Kittilä. 

    Artificial snow is typically used to construct snow structures. The material properties 

of snow can be described by various factors, including density, compressive strength, 

tensile strength, creep, viscosity, and coefficient of elasticity.  
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Figure 1. Snow castle in Kemi, Finland (2019). Photo Esko Järvenpää. 

 

    The eccentricity of the compressive force, resulting from the relatively rapid 

compression and settlement of the snow structure, affects the bending moments and shear 

forces. These, in conjunction with the changing environmental conditions, can lead to the 

collapse of the snow vault. Should the shape of the snow vault undergo alteration, it is 

imperative to undertake a calculation of the resulting stresses and evaluate the condition 

of the structure in accordance with the new calculations. The settlement should be limited 

to the previously specified limit, based on site-specific calculations. Correction of the 

settled snow structure should not be made by increasing the thickness of the snow. 

Vault forms 

Parabolic vault 

The equation for the parabolic vault in the coordinate system shown in Figure 2 is given 

by 

𝑦 = −
4ℎ

𝑙2
𝑥2 + ℎ, −

𝑙

2
< 𝑥 <

𝑙

2
. (1) 

 

 

Figure 2. Parabolic vault, and an example vault with the rise ratio l/h = 2. 

 

The horizontal force H acting on the vault, corresponding to the vertical load q per unit 

length of the x-axis, is then given by 
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 𝐻 =
𝑞𝑙2

8ℎ
(2) 

 

and the normal force R(x) of the vault at point x is 

 

𝑅(𝑥) ≡ 𝐻√1 + 𝑦′(𝑥)2 =
𝑞𝑙2

8ℎ
√1 +

64ℎ2𝑥2

𝑙4
. (3) 

 

Consequently, the normal force at the base of the vault is 

 

𝑅𝑏 ≡ 𝑅 (
𝑙

2
) =

𝑞𝑙2

8ℎ
√1 +

16ℎ2

𝑙2
. (4) 

 

If we denote the area of the cross-section at the vertex by 𝐴𝑡, then the area of the cross-

section A(x) is 

𝐴(𝑥) =
𝐴𝑡

√1 + 𝑦′(𝑥)2
=

𝐴𝑡

√1 +
64ℎ2𝑥2

𝑙4

. (5)
 

 

The compressive stress 𝜎𝑏 at the base is obtained with the help of Equations (4) and (5) 

and the relation 𝑞 = 𝛾𝐴𝑡, where 𝛾 is the unit weight of the snow material. The result is 

 

𝜎𝑏 ≡ 𝜎(𝑙 2⁄ ) =
𝑅(𝑙 2⁄ )

𝐴(𝑙 2⁄ )
= 𝛾 (

𝑙2

8ℎ
+ 2ℎ) . (6) 

 

Equation (6) can be written as 

 

 
𝜎𝑏 = 𝑘𝑝𝛾𝑙, (7) 

 

where 𝑘𝑝 is called stress coefficient and is obtained from  

 

𝑘𝑝 =
𝑙

8ℎ
+

2ℎ

𝑙
. (8) 

 

The coefficient 𝑘𝑝 in terms of rise ratio 𝑙 ℎ⁄  is shown graphically in Figure 3. Minimising 

the coefficient 𝑘𝑝 as a function of height h gives  

 
𝑑𝑘𝑝

𝑑ℎ
≡ −

𝑙

8ℎ2
+

2

𝑙
= 0 → ℎ =

𝑙

4
→ 𝑘𝑝 = 1. (9) 

 

Thus, the normal stress 𝜎𝑏 = 𝑘𝑝𝛾𝑙 gets its minmum  

𝜎𝑏min = 𝛾𝑙, (10) 
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when the rise ratio 𝑙 ℎ⁄ = 4 (compare Figure 3). The maximum span length 𝑙pmax of a 

momentless standalone parabolic vault, when the compressive stress is used as criterion, 

is obtained by setting 𝜎𝑏 = 𝜎adm, where 𝜎adm is the admissible stress of snow and using 

Equation (7). The result is 

 

𝑙pmax =
𝜎adm

𝑘p𝛾
. (11) 

 

 

Figure 3. Stress coefficient kp of parabolic momentless standalone vault at the base. 

Catenary vault 

The equation for the catenary in the coordinate system shown in Figure 4 is 

 

𝑦(𝑥) = 𝑎 (1 − cosh
𝑥

𝑎
) + ℎ, −

𝑙

2
< 𝑥 <

𝑙

2
, (12) 

 

where a = H/w. Here, H represents again the horizontal force and w represents the weight 

of the vault per unit length. The normal force 𝑅(𝑥) at point x gets the form 

    

𝑅(𝑥) ≡ 𝐻√1 + 𝑦′(𝑥)2 = 𝐻√1 + (sinh
𝑥

𝑎
)

2

= 𝐻 cosh
𝑥

𝑎
. (13) 

 

 

Figure 4. Catenary vault, and example vault with rise ratio l/h = 2.0. 
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The expression for the normal force 𝑅𝑏 at the base is then 

 

𝑅𝑏 ≡ 𝑅 (
𝑙

2
) = 𝐻 cosh

𝑙

2𝑎
= 𝑎𝑤 cosh

𝑙

2𝑎
(14) 

 

and the normal stress 𝜎𝑏 at the base further 

 

𝜎𝑏 ≡
𝑅𝑏

𝐴
=

𝑎𝑤

𝐴
cosh

𝑙

2𝑎
= 𝑎𝛾 cosh

𝑙

2𝑎
(15) 

 

or 

𝜎𝑏 = 𝑘𝑐𝛾𝑙, (16) 

where 

𝑘𝑐 =
𝑎

𝑙
cosh

𝑙

2𝑎
(17) 

 

is the corresponding stress coefficient. 

 

With 𝑦 = 0 and 𝑥 = 𝑙 2⁄  Equation (10) gives  

 

ℎ = 𝑎 (cosh
𝑙

2𝑎
− 1) . (18) 

 

This Equation can be written as 

 
𝑎

𝑙
(cosh

𝑙

2𝑎
− 1) −

ℎ

𝑙
= 0. (19) 

 

This is a nonlinear equation, which can be used to solve the ratio 𝑎 𝑙 ⁄ corresponding to a 

given ratio 𝑙 ℎ.⁄  The stress coefficient 𝑘𝑐 corresponding to a given rise ratio 𝑙 ℎ⁄  can be 

determined by first solving the ratio 𝑎 𝑙 ⁄ from Equation (19) and then using Equation (17). 

The stress coefficient 𝑘𝑐 in terms of rise ratio 𝑙 ℎ⁄  is shown graphically in Figure 5. 

    Minimizing the stress coefficient 𝑘𝑐 with respect to the parameter a gives 

 
𝑑𝑘𝑐

𝑑𝑎
≡

1

𝑙
cosh

𝑙

2𝑎
−

1

2𝑎
sinh

𝑙

2𝑎
= 0 →

2𝑎

𝑙
= tanh

𝑙

2𝑎
. (20) 

 

Solution of this nonlinear equation is 𝑎 = 0.416778𝑙. The corresponding stress 

coefficient is obtained using Equation (17): 

 

𝑘𝑐 = 0.416778 ∙ cosh
1

2 ∗ 0.416778
= 0.754440. (21) 

 

Substituting this into Equation (18) gives 
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ℎ = 0.416778𝑙 ∙ (cosh
1

2 ∙ 0.416778
) = 0.337662𝑙 (22) 

 

and the corresponding rise ratio is 𝑙 ℎ⁄ =  1 0.337662 = 2.961533.⁄  Thus the normal 

stress 𝜎𝑏 attains its minimum 𝜎𝑐min = 0.754𝑎, when 𝑙 ℎ⁄  = 2.96 (compare Figure 5). 

 

 

Figure 5. Stress coefficient kc of standalone catenary vault at the base. 

 

    The maximum span length 𝑙𝑐max of a momentless standalone catenary vault, when the 

compression stress is used as the criterion, is obtained by setting 𝜎𝑏 = 𝜎adm, where 𝜎adm 

is admissible compressive stress of snow. Using Equation (16) one obtains  

 

𝑙𝑐max =
𝜎adm

𝑘𝑐𝛾
. (23) 

Circular vault 

Similarly, as above, the axis of gravity of the circular vault can be expressed as a function 

of its span length l and height h as follows: 

 

 𝑦 = (
1

8ℎ
) (4ℎ2 − 𝑙2 + √−64𝑥2ℎ2 + 16ℎ4 + 8ℎ2𝑙2 + 𝑙4) . (24) 

 

    Figure 6 demonstrates the rapid increase in thickness of the circular vault towards the 

base. The stress in the arch decreases from the top to the base [17]. The circular shape for 

vertical loads as a momentless structure is a viable option for low arches. However, snow 

arches tend to favour higher arches, which is why the circular vault is not discussed 

further in this article. Furthermore, Figure 12 illustrates the difference between a 

standalone circular vault and other vault types discussed in this article.  
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Figure 6.  An example of a standalone momentless circular vault. 

Constant stress vault 

The constant stress vault equation, according to the coordinates in Figure 7, is  

 

𝑦(𝑥) = 𝑏 ln (cos
𝑥

𝑏
) + ℎ,   −

𝑙

2
< 𝑥 <

𝑙

2
. (25) 

 

where b = 𝜎 𝛾⁄ . The symbol 𝛾 is the unit weight of the material [MN/m3] and σ is the 

constant stress level in the vault [MPa]. 

 

 

Figure 7. Constant stress vault and an example of a constant stress vault with a rise ratio l/h = 2. 

 

The normal force 𝑅(𝑥) at point x is  

𝑅(𝑥) ≡ 𝐻√1 + 𝑦′(𝑥)2 = 𝐻√1 + (tan
𝑥

𝑏
)

2

=
𝐻

cos
𝑥
𝑏

. (26) 

 

By denoting the area of the top cross-section as At, the horizontal force H is 

 

𝐻 = 𝐴t𝜎. (27) 

 

Based on relation 𝜎 = 𝑅 𝐴 ⁄ , the area of the cross-section 𝐴(𝑥) has the form 
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𝐴(𝑥) ≡
𝑅(𝑥)

𝜎
=

𝐻

𝜎 cos
𝑥
𝑏

=
𝐴𝑡

cos
𝑥
𝑏

. (28) 

 

With 𝑦 = 0 and 𝑥 = 𝑙 2⁄   Equation (25) gives  

 

ℎ = −𝑏 ln (cos
𝑙

2𝑏
) . (29) 

 

The stress 𝜎 = 𝛾𝑏 can be written as 

 

𝜎 = 𝑘𝑐𝑠𝛾𝑙, (30) 

 

where  

 

𝑘𝑐𝑠 = 𝑏 𝑙⁄ (31) 

 

is the corresponding stress coefficient. Equation (29) can then be written as 

 
𝑏

𝑙
ln (cos

𝑙

𝑏
) +

ℎ

𝑙
= 0. (32) 

 

This is a nonlinear equation, which can be used to solve the ratio 𝑏 𝑙 ⁄ corresponding to a 

given rise ratio 𝑙 ℎ.⁄  The stress coefficient 𝑘𝑐𝑠 corresponding to a given rise ratio 𝑙 ℎ⁄  is 

obtained first solving the ratio 𝑏 𝑙 ⁄ from Equation (32) and then using Equation (31). The 

stress coefficient 𝑘𝑐𝑠 in terms of the rise ratio 𝑙 ℎ⁄  from 1 to 6 is presented graphically in 

Figure 8. 

 

 

Figure 8. Stress coefficient kcs of constant stress standalone vault. 

Comparison of stresses in the vaults 

Above, we introduced the stress calculation coefficients kp, kc, and kcs. Figure 9 combines 

the results and shows the stress magnitudes in the momentless vaults in the same figure 

as a function of the rise ratio. 

    Figure 9 illustrates that the higher the vaults are, the more they differ from each other, 

and the benefit of the constant stress vault is remarkable. For instance, at a rise ratio of 2, 

a catenary has twice the stress level of a constant stress vault. This information may also 

be useful for weak materials other than low strength snow.  



147 

 

 

Figure 9.  Stress coefficients of parabola, catenary and constants stress vault in standalone vaults. 

Extreme span of constant stress vault 

The minimum stress coefficient 𝑘𝑐𝑠 is achieved by decreasing the rise ratio 𝑙 ℎ ⁄ to zero. 

In this case Equation (32) gives ln(cos 𝑙 2𝑏⁄ ) = −∞, 𝑙 𝑏 = 𝜋⁄ . Thus, the minimum 

stress coefficient of the constant stress vault is  𝑘𝑐𝑠 = 1 𝜋 = 0.3183⁄ . 

    The maximum span length 𝑙csmax of a standalone constant stress vault, when the 

compression stress is used as criterion, is obtained by setting 𝜎𝑏 = 𝜎adm, where 𝜎adm is 

the admissible compressive stress of snow. Using Equation (30) one obtains  

 

𝑙𝑐𝑠max =
𝜎adm

𝑘𝑐𝑠𝛾
. (33) 

 

The ultimate asymptotical span length corresponds to 𝑙 ℎ ⁄ = 0 and 𝑘𝑐𝑠 = 1 𝜋 ⁄ resulting 

to  

𝑙𝑢𝑙𝑡 =
𝜋𝜎adm

𝛾
, (34) 

 

see [10]. The height of the arch is limited by its weight at the base. To maintain a constant 

stress shape, the rise of the vault, which causes the cross-sections to meet at the base, is 

illustrated in Figure 10. Using Equation (28) with 𝐴(𝑥) = 𝑑(𝑥) ∙ 1 m gives  

 

𝑑𝑏 ≡ 𝑑 (
𝑙

2
) =

𝑑𝑡

cos
𝑙

2𝑏

=
𝑑𝑡

cos
𝛾𝑙
2𝜎

(35) 

 

and noting that 

 

𝑑𝑏 = 𝑙
√1 + 𝑦′(𝑥)2

𝑦′(𝑥)
= 𝑙

√1 + (tan
𝑙

2𝑏
)

2

tan
𝑙

2𝑏

=
𝑙

sin
𝑙

2𝑏

=
𝑙

sin
𝛾𝑙
2𝜎

. (36) 

 

The equation for solving the vault span is therefore  

 

𝑙 − 𝑑𝑡 tan
𝛾𝑙

2𝜎
= 0. (37) 
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    To illustrate, if we substitute 𝛾 = 0.006 MN/m3, 𝜎 = 0.200 MPa and 𝑑𝑡 = 4 m the 

solution is 𝑙 = 102.110 m. Subsequently, equation (29) gives ℎ = 108.209 m and the 

rise ratio becomes 𝑙 ℎ ⁄ = 0.944, (compare Figure 10). 

 

 

Figure 10. The maximum span length of a snow vault. The unit weight and the stress used are 

chosen values. 

Calculation examples  

Shape difference of the vaults  

For the following example, the circular, constant stress, catenary and parabolic standalone 

momentless vault shapes have been calculated using a span of 12 m and a height of 6 m. 

For the catenary vault, the parameter a has first been solved using Equation (12) from the 

boundary conditions y = 0 and x = 6, and consequently the parameter b for the constant 

stress vault using Equation (25). The unit weight of snow is γ = 0.006 MN/m3. The 

difference of the shapes is demonstrated in Figure 11.  

 

Figure 11.The shapes of circular, constant stress, catenary and parabolic snow vaults for l/h = 2. 

Comparison of the thickness of snow in the vaults  

Each type of arch requires a different vertical load for the independent momentless form. 

The vertical snow thicknesses of the arches of equal thickness at the apex are shown in 
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Figure 12 for the rise ratio l/h = 2. Furthermore, Figure 13 illustrates the cross-sections of 

the same vaults.  

    It is worth noting that the illustrative thicknesses in Figure 12 and the cross-section in 

Figure 13 do not indicate that the vaults are comparative alternative vaults. This is because 

their compressive stresses are calculated using the same thickness of 2 m at the apex. 

 

 

Figure 12. The vertical thickness of the momentless standalone snow vaults when l/h = 2. 

   

 

Figure 13. Demonstration of the snow vaults for l/h = 2 with equal apex thicknesses. 

Rise ratio and shape in constant stress vault 

For the following example, four constant stress vaults are calculated using Equations (25) 

and (28). Figure 14 shows the vaults with rise ratios of 𝑙 ℎ ⁄ = 1.5, 2.0, 4.0 and 6.0 when 

the unit weight of snow is  𝛾 = 0.006 MN/m3. The figure also shows the stresses and the 

bottom areas in the vaults. The stresses have been determined by first solving the ratio 

𝑏 𝑙 ⁄  from Equation (32) and then using Equations (31) and (30). The bottom areas have 

been obtained using Equation (29) with  𝑥 = 𝑙 2⁄ . 

Illustrative comparison of vault shapes and spans 

The characteristics of cross-sections of momentless parabolic, catenary and constant 

stress vaults were presented in the previous section. Comparative calculations and 3D 

modelling were carried out for each type of arch. The snow vaults had the same structural 

thickness at the crown and experienced a maximum compressive stress of 0.15 MPa. The 

rise ratio used was 2.0. Figure 15 shows the shapes and sizes of the calculated vaults on 
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the same scale. The superiority of the constant stress vault in terms of span length over 

the corresponding parabolic and catenary vaults is evident. 

 

 

Figure 14. Examples of constant stress snow vaults with rise ratios of 1.5, 2.0, 4.0, and 6.0.  

 

 

Figure 15. Comparison of snow vaults with a stress level of 0.15 MPa and the rise ratio of 2.0. 
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Snow volumes based on rise ratio 

The volumes of parabolic, catenary, and constant stress arches are calculated using their 

respective volume coefficients kpvol, kcvol, and kcsvol. These coefficients are calculated and 

displayed graphically in Figure 16. 

    The volume of a vault of a cross-section area 𝐴(𝑥) is obtained from 

 

𝑉vol = ∫ 𝐴(𝑥)

𝑙
2

−
𝑙
2

𝑑𝑠(𝑥) = ∫ 𝐴(𝑥)

𝑙
2

−
𝑙
2

√1 + 𝑦′(𝑥)2𝑑𝑥. (38) 

 

For parabolic vault, we get 

 

𝑉pvol = 2 ∫
𝐴𝑡

√1 +
64ℎ2𝑥2

𝑙4

√1 +
64ℎ2𝑥2

𝑙4
𝑑𝑥

𝑙
2

−
𝑙
2

= 𝐴𝑡𝑙. (39) 

 

For catenary vault, we get 

 

𝑉cvol = ∫ 𝐴√1 + (sinh
𝑥

𝑎
)

2
𝑙
2

−
𝑙
2

𝑑𝑥 = 𝐴 ∫ cosh
𝑥

𝑎

𝑙
2

−
𝑙
2

𝑑𝑥 =
2𝑎

𝑙
sinh

𝑙

2𝑎
𝐴𝑙. (40) 

 

For constant stress arch, we get 

 

𝑉csvol = ∫
𝐴𝑡

cos
𝑥
𝑏

𝑙
2

−
𝑙
2

√1 + (tan
𝑥

𝑏
)

2

𝑑𝑥 = 2𝐴𝑡 ∫
1

(cos
𝑥
𝑏

)
2

𝑙
2

−
𝑙
2

=
2𝑎

𝑙
tan

𝑙

2𝑏
𝐴𝑡𝑙. (41) 

 

These results can be summarised as 

 
𝑉pvol = 𝑘pvol𝐴𝑡𝑙,           𝑉cvol = 𝑘cvol 𝐴𝑙,          𝑉csvol = 𝑘csvol 𝐴𝑡𝑙, (42) 

 

where the volume coefficients are 

 

𝑘pvol = 1,          𝑘cvol =  
2𝑎

𝑙
sinh

𝑙

2𝑎
,           𝑘csvol =   

2𝑎

𝑙
tan

𝑙

2𝑏
. (43) 

 

the ratios 𝑎 𝑙⁄  and 𝑏 𝑙⁄  corresponding to given rise ratio 𝑙 ℎ⁄  are obtained by solving the 

Equations (19) and (32). 

    Figure 16 illustrates the volumes of snow in different vault types when the cross-

sectional areas at the crown are equal. Figure 16 is divided into two parts. This is due to 

the fact that the volume of the constant stress vault changes significantly as the height of 

the vault increases. As the height decreases, the volumes of the catenary and constant 

stress vaults approach the volume of the parabola.  
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Figure 16.  Vault volume coefficients kpvol, kcvol, and kcsvol, according to rise ratios. 

Comparison example of stresses and snow volumes  

Table 1 shows the calculated stresses and volumes of parabolic, catenary, and constant 

stress vaults, highlighting the differences between the types. The calculations were based 

on the formulas previously introduced. 

    The vaults have a snow thickness of one metre at the crown, a span of 15 m and a height 

of 7.5 m. The stresses and volumes of snow have been calculated for a vault strip of one 

metre. The unit weight used was 0.005 MN/m3 

 
Table 1. Stresses and snow volumes in the example vaults. 

Vault type Span [m] Height [m] Stress [MPa] Volume [m3] 

Parabola 15.0 7.5 0.08 15.0 

Catenary 15.0 7.5 0.06 22.5 

Constant stress 15.0 7.5 0.03 40.5 

 

     The volume of the constant stress vault, with the same thickness at the apex as the 

parabola and the catenary, is significantly greater than the volumes of the parabola and 

the catenary. In practice, the constant stress vault does not necessarily require the same 

thickness due to the thickening of the cross-section towards the base.  

Comparison of extreme span lengths for parabola, catenary and 

constant stress vaults 

Figure 17 shows the maximum span lengths of the freestanding parabolic, catenary and 

constant stress vault according to the maximum compressive stress. For the parabolic and 

catenary arches, the critical point is at the base of the arch, while for the constant stress 

vault, the stress is constant along the entire length of the arch.  The assumed compressive 

stress limit of the snow is 0.2 MPa. The unit weight of snow used is 0.006 MN/m3. The 

stability of the structure is not specified.  The thickness of the arch at the crown can be 

chosen arbitrarily as it has no effect on the magnitude of the stresses. The calculation 
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result describes the situation at time t = 0. In this case, it is assumed that the compression 

of the snow is eliminated by increasing the horizontal force of the arch to match the 

horizontal force of the uncompressed arch. 

    The maximum span length of a parabolic vault is terms of the rise ratio can be 

determined using Equations (8) and (11). The maximum span lengths of catenary and 

constant stress vaults can be determined by first solving Equations (19) and (32) for the 

ratios 𝑎 𝑙⁄  and 𝑏 𝑙⁄ , respectively, and then using Equations (23) and (33). 

      

2 

Figure 17. The maximum span lengths of the parabolic, catenary and constant stress vaults. Elastic 

and viscous compression has been eliminated. 

 

    Figure 17 reveals the differences between the vaults. The difference increases as the 

height of the arch is increased. As the vault height is reduced, the catenary and constant 

stress vault approaches the parabolic vault. 

Bending stresses due to settled shapes in snow vaults  

In the case of snow vault structures, the optimum shape can only be achieved temporarily, 

when the elastic and viscous compression of the snow has been eliminated by artificially 

increasing the thrust force of the vault. This can be achieved by increasing the 

compression force at the crown, between the vault halves, by installing hydraulic jacks or 

by reducing the distance between the vault supports. As the compression increases over 

time, it may be necessary to increase the thrust again. 

    The snow vault is sensitive to rapid settlement due to its viscous behaviour.     

Deformations of snow can be studied computationally as viscous deformations of snow 

[1]. The viscosity properties of snow are strongly dependent on the density of the snow. 

It is recommended to use as dense snow as possible for vault structures [2].  

Calculation examples of deformed vaults 

The effect of the deformed shape on the stresses is illustrated below using two example 

cases.  The calculation has been carried out assuming that the base of the vault is rigid. 

The self-weight is the weight of the original constant stress vault. The length of the settled 
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vault is shorter than the original vault, so the original weights given in the calculation 

represent the compaction of the snow with increased unit weight. 

    The vaults have settled shapes as shown in Figure 18.  The settlements at the crown are 

h/8 equal to 0.625 m, corresponding to the maximum value allowed by the design 

guidelines RIL 218-2001 [1]. 

    In the calculations, the thickness of the vault at the crown is 1.0 m. The span is 10 m 

and the height of the vault is 5 m. The unit weight of the snow used is 0.005 MN/m3. The 

constant stress calculated for the original vault is 0.02 MPa. 

    Simple FEM calculations using the established shapes with beam elements show that 

the "wrong" shape changes the stresses significantly. The calculated bending moments 

are shown in Figure 19 and the corresponding stresses in Figure 20. 

 

 

Figure 18. Settled snow vaults. 

 

 

Figure 19. Bending moments of the vaults due to “wrong” shapes. 

 

 

Figure 20. Stresses in the vault of the settled forms. 

 

      Shear stresses are generated in the settled vault due to the bending moments caused 

by the eccentricity of the thrust line. The shear stresses together with the bending stresses 

can in worst case lead to the collapse of the vault.  
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Summary 

In snow vaults, the dead load is usually the biggest load. The shape of the arch has a 

decisive influence on its load-bearing capacity. The rapid and large viscous deformations 

of the snow emphasise the importance of shape analysis, and computational methods are 

required to calculate the deformations. The settlements should be monitored and the 

bearing capacity calculated according to the deformed shape. 

    The size of the snow load on the vault should be monitored and a good aim is to keep 

the snow thickness in line with the calculations. Locally added snow will not normally 

improve the bearing capacity of the vault.  

     The shape of the vault formwork does not match the shape of the central axis of the 

vault. The vault formwork must be shown on the structural drawings.  The thickness of 

the snow must be shown on the structural drawings. The drawings should indicate the 

weight of additional snow allowed due to snowfall. Snow removal may be required. 

     It would seem that the constant stress vault is the most efficient form of snow vault. 

However, the published instructions for snow structures do not yet recognise the constant 

stress vault. It may therefore be helpful to supplement the published snow construction 

design instructions, especially with regard to vault and dome structures. It would also be 

beneficial to conduct further research and practical testing of snow structures. 
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