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Summary  Stiffened Cold-Formed Steel (CFS) sections often exhibit intricate nonlinear 
behaviors attributable to factors such as flexure effects and excessive slenderness. Traditional 
design methodologies, including the direct stiffness method, may inadequately capture these 
subtleties, potentially resulting in conservative or suboptimal designs. This study aimed to 
evaluate the performance of various machine learning algorithms, including simple and ensemble 
models, to predict the bending capacity of stiffened and unstiffened cold-formed beams in pure 
bending. A parametric study was conducted based on verified finite element analysis, and the 
machine learning algorithms were utilized to develop a unified capacity prediction method. The 
performance of six classical machine learning algorithms and four ensemble models were 
compared. The findings demonstrate that ensemble models, including AdaBoost, Gradient 
Boosting, Random Forest, and Extra Trees, outperform simple machine learning models in 
predicting the bending capacity of CFS beams. Moreover, introducing the stacking ensemble 
technique, using six different base models selectively, resulted in better performance than the 
individual baseline models. The approach addressed the nonlinearity pattern in the dataset caused 
by the flexure effect and excessive slenderness. The study suggests that adopting the proposed 
numerical and machine learning techniques could be a reliable method for predicting the structural 
behaviour and conducting cost-effective design of CFS beams, compared to the traditional 
analytical methods. 
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Introduction 

Cold-Formed Steel (CFS) cross sections are used effectively and extensively in the 

construction industry and many structural applications as secondary load-carrying 

elements, such as roof purlins sections and transmission line towers. Most commonly, 

CFS cross sections are C-sections and Z-sections. These sections are manufactured by 
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bending flat sheets with a thickness range from 0.4mm to 6.4mm, according to Eurocode 

3 [1] and North America’s typical thickness ranges [2]. CFS has attractive advantages 

such as ease of installation and prefabrication, high strength-to-weight ratios, and high 

structural efficiency. Furthermore, the inherent versatility of the manufacturing process 

facilitates the creation of diverse geometries, thereby offering significant potential for the 

optimization of CFS sections to align with specific structural objectives. This adaptability 

holds promise for enhancing manufacturing practices and realizing optimized structural 

designs. 

CFS sections typically consist of plate elements with a significant width-to-thickness 

ratio. As a result, local buckling and distortional buckling are the primary failure modes 

for cold-formed steel members. These geometric failure modes hinder the efficient 

utilization of material, which can be resisted with numerous techniques. In plate 

mechanics, incorporating stiffeners can enhance the section's strength by providing out-

of-plane support to the flat plate elements. Recently, the structural behavior of CFS 

stiffened sections has been investigated. For instance, complex edge stiffener, simple lips, 

perpendicular or inclined to flanges profile, have been used to improve the structural 

behavior of the channel-section columns against the expected buckling failure modes [3-

5], and Z-purlins under combined bending and shear [6]. Columns with built-up sections 

have also been enhanced with intermediate stiffeners [7, 8]. Furthermore, efforts have 

been made to study the effectiveness of introducing edge or compression flange stiffeners 

[9-12], and intermediate web stiffeners [13] to C- and Z-sections subjected to bending. 

There are two analytical methods adopted in the specifications to design the CFS 

sections [1, 14]: the Direct Strength Method (DSM) and the Effective Width Method 

(EWM). The former method is easy to apply if the studied sections are within the 

geometric boundaries specified in the North American standard [14]. However, in case 

new section geometry is studied, the semi-empirical strength curves used to determine the 

ultimate strength have to be calibrated against the test results of such sections [13, 15]. 

The second approach could be reliable but tedious, as an effective width of the stiffened 

element must be calculated iteratively, especially for complex stiffened sections that 

design codes have not adequately covered.  

Machine Learning Methods (MLMs) have recently been employed to overcome such 

calculation difficulties and speed up the design process of CFS sections. The applications 

included the loading capacity prediction of beams experiencing local buckling [16, 17], 

distortional buckling [18], lateral-torsional buckling [19, 20], yielding [21], designing 

concrete-filled cold-formed steel columns [22], and the development of moment-rotation 

curves of semi-rigid joints using linear genetic programming [23]. Classical machine 

learning methods were also used for capacity prediction of CFS compression members, 

such as circular hollow sections [24-26], built-up sections [27], and for prediction of the 

axial load capacity of cold-formed lipped channels [28]. In some cases where CFS 

sections are subjected to combined axial-bending straining actions, a deep learning 

procedure was used to evaluate the beams’ structural performance [29] and to predict the 

axial capacity of CFS channel [30]. Usually, data collected from the literature is used. 

However, in studying new problems, validated numerical data may be considered a cost-

effective alternative [12, 31, 32]. 
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So far, the implementation of machine learning in designing CFS sections subjected 

to bending has not been comprehensively addressed. A challenging issue with this 

technique is comparing MLMs with varying complexity levels caused by the geometric 

parameters affecting the mechanical behavior of CFS sections to identify a viable 

approach for predicting bending strength based on geometric parameter data points [33, 

34]. This paper evaluates ten different machine learning algorithms for designing 

stiffened and unstiffened C-channel beams subjected to flexural loads. A three-

dimensional finite element model [35] was developed to identify the most significant 

parameters influencing the behavior of stiffened C-channel beams. These parameters 

were subsequently utilized as inputs for machine learning algorithms. A dataset 

comprising 140 points, generated using Central Composite Design (CCD), was employed 

to select the most critical factors for maximizing bending capacity. The best-performing 

techniques were then selected for a stacking approach to predict the bending capacity of 

CFS channels. The developed numerical and machine learning methods provide a 

systematic approach for estimating the capacity of stiffened CFS channels subjected to 

flexural loads. Moreover, it can contribute to more efficient and cost-effective 

construction projects by reducing material waste and overestimation in steel constructions 

while meeting long-term design criteria. 

Dataset  

Finite element results compare reliably to experimental testing in structural behavior 

investigations [31, 36-39]. In our study, a nonlinear Finite Element Analysis (FEA) was 

used to record the response of stiffened and unstiffened beam sections subjected to 

flexural loading by utilizing the finite element package ABAQUS [35]. Different 

geometric parameters were investigated, including the size and position of the proposed 

V-shape stiffener based on CCD, which is a popular experimental design method used in 

Response Surface Methodology (RSM) to build a quadratic model for the response 

variable without needing to test all possible combinations of factors. A total of 140 data 

points were generated for training the machine learning models using an elasto-plastic 

finite element method validated against 32 CFS specimens of test data taken from the 

existing literature [13, 40]. The comprehensive framework of the finite element model 

had been previously verified and validated, incorporating loading conditions, material 

modeling, and comparison with experimental data [41].  

Figure 1(a) shows a moment-curvature curve of the CFS-stiffened channel beam (C-

1-B4) tested by Wang and Young  [13] under bending about its major x axis. The figure 

also shows one of the verified test results of Laim et al. [40] (Figure 1(b)). The test was 

to evaluate and study the flexural behavior of different CFS cross section profiles. As 

shown in Figure 1, the model was able to follow the flexural behavior of tests up to failure 

with acceptable accuracy. Thus, it could be concluded that the model could reliably 

simulate the structural response of beams in terms of ultimate load and failure mode, 

ensuring reliable results for further parametric studies. Notably, the structural analysis 

was carried out based on the center line dimensions and the metallic base thickness of the 

cross sections. The meticulous measurements conducted on the cross-sectional 
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dimensions of all specimens and the reported material properties ascertained through 

tensile coupon tests mitigated the impact of geometric imperfections [13, 40]. 

 

 
                                         (a)                                                          (b) 

Figure 1: Comparison of (a) FEA moment-curvature curve with the experimental results [13]  

(b) FEA load-displacement curve with the experimental results [40] 

Parameters 

As a result of this study, the moment capacity of a channel beam is represented by Mult, 

which represents the ultimate pure bending moment at the midspan of the test specimens. 

The test specimens were cut to a specified length of 1400 mm, resulting in a final clear 

test span of 1260 mm. This relatively short span was chosen to investigate the local and 

distortional buckling of the stiffened sections. The design parameters for moment capacity 

and web stiffening of CFS beams were determined, with a total of five parameters: beam 

height h, flange width b, thickness t, the angle of the inclined part measured from the 

vertical axis 𝜃 and the inclined length of the stiffener w, see Figure 2. Values of those 

factors were constrained by AISI specification limitations [2] and summarized in Table 1. 

The ultimate moment capacity Mult was then determined numerically for the developed 

models, according to the loading and boundary condition of the test beam (C-1-B4) [13], 

to train the MLMs.  
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Figure 2: Schematic diagram of stiffened CFS channel section 

 

Table 1: Variables of machine learning algorithm and their limits 

Variable Units Min. Max. 

b mm 6 128 

h mm 60 320 

t mm 0.4 2.4 

θ degree 15 60 

w mm 3 80 

 

Pearson correlation analysis is a statistical technique used to quantify the strength and 

direction of the linear relationship between two continuous variables. To find the 

correlations and dependencies between the different design parameters, the Pearson 

correlation coefficient was calculated. It varies between –1 and 1 and is defined as 

𝜌𝑖𝑗 =
𝑛(∑ 𝑥𝑖𝑦𝑖) − (∑ 𝑥𝑖)(∑ 𝑦𝑖)

√𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2√𝑛 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖)2

, 
         (1) 

where xi and yi are individual sample points indexed with i and n is sample size. Figure 3 

shows that the variables are not highly correlated, except for b and h with Pearson's 

correlation coefficients of 0.67. It is notable that b/h value ranges from 0.1 to 0.4 to ensure 

the applicability of these sections and to facilitate the comparison of the effects of utilizing 

the stiffener at a constant cross-sectional length. 
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Figure 3: Pearson correlation matrix 

Feature importance study 

When dealing with input data containing different features, identifying each feature's 

importance can significantly contribute to improving the performance of MLMs. 

Moreover, it can better understand how each feature contributes to overall performance 

prediction. The feature importance is calculated according to the performance 

deterioration caused by the removal of each feature. In the context of Random Forests, 

which are ensembles of decision trees, Mean Decrease in Impurity (MDI) is a measure of 

feature importance calculated as the average (mean) decrease in impurity across all trees 

in the forest resulting from splits on that feature [42]. Based on the random forest 

regression, a sequence of capacity predictions is performed, each excluding one feature. 

Figure 4 shows the feature importance based on the mean and standard deviation (black 

line) of the impurity decrease related to each variable. The results indicate that plate 

thickness and the flange width are major contributors to the model's predictive accuracy. 

The thickness is prominently important due to its contribution to the overall stiffness of 

the section, While the flange width outperforms the section's height due to the absence of 

a stiffener in the flange. Including the stiffener on the web would divide its height into 

short and stiff parts, diminishing its effect. Other variables also contribute, but their 

impact is relatively similar and less pronounced. 
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Figure 4: Feature importances using MDI 

Machine learning methods 

In this section, MLMs used to predict the bending capacity of CFS channels subject to 

pure bending are introduced. This is a regression task, where the correlations between the 

bending capacity (response or dependent variable) and some related features like 

geometric properties (predictors or independent variables) are first learned from the 

training set and then applied to make inferences for new samples (testing set). The ten 

most effective models are then selected to perform the bending prediction. 

Linear Regression  

Linear Regression (LR) is perhaps the simplest approach for modeling the relationship 

between a dependent variable y and the independent variables 𝑥0, 𝑥1,…, 𝑥𝑛. The objective 

of linear regression is to find the hyperplane that best fits the data points and can be used 

to predict the values of the dependent variable for new observations as  

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛,       (2) 

with some coefficients 𝑤0, 𝑤1,…, 𝑤𝑛. The ordinary least squares method is a simple and 

easy-to-implement LR algorithm. Still, it has some limitations, such as overfitting and 

multicollinearity. In cases where there are many independent variables, multicollinearity 

can lead to instability in the estimates of the regression coefficients. Regularization 

methods such as Lasso and Elastic Net can overcome these limitations by adding a penalty 

term to the loss function to control the coefficients' size. These methods can help prevent 

overfitting and improve the model's generalization performance. The following sub-

sections will discuss these regularization methods in more detail [42]. 
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Lasso 

Least Absolute Shrinkage and Selection Operator (Lasso) is a regularization technique 

used in linear regression to address the issue of overfitting by adding a penalty term to 

the loss function. The penalty term, the absolute value of the sum of the coefficients 

multiplied by a hyperparameter alpha, encourages the coefficients of less important 

features to be shrunk towards zero, resulting in a sparse model where only the most 

important features are retained. Lasso has been shown to be effective in improving the 

model's generalization performance and reducing the estimates' variance, see [43] for 

more details. 

Elastic-Net  

Elastic-Net (EN) is a regularization technique that combines Lasso and so-called Ridge 

regression. It overcomes the limitations of each method by adding a penalty term to the 

loss function that includes both the L1 and L2 norms of the coefficients. The L1 norm helps 

to achieve sparsity by shrinking some of the coefficients to zero, while the L2 norm shrinks 

the remaining coefficients towards zero. The ratio between the two penalty terms can be 

tuned using a hyperparameter, allowing the user to control the trade-off between Lasso 

and Ridge regression [44]. 

K-Nearest Neighbors Regression 

K-Nearest Neighbors regression (KNN) is a non-parametric algorithm for regression 

problems. Unlike LR, KNN regression makes no assumptions about the underlying data 

distribution. Instead, it uses the K nearest data points in the training set to predict the 

value of a new data point. The predicted value averages the K nearest neighbors’ target 

values. The number of neighbors, K, is a hyperparameter that needs to be selected by the 

user [45]. 

KNN regression has several advantages, such as capturing nonlinear relationships and 

being easy to understand and implement. However, it also has some drawbacks, such as 

being sensitive to outliers and being inefficient when working with large datasets. 

Additionally, selecting the appropriate value for K can be challenging, and it may require 

some trial and error to find the optimal value for a given problem. 

Decision Trees Regression   

CART, which stands for Classification and Regression Trees, is a machine learning 

algorithm that can be used for regression tasks. It works by creating a decision tree based 

on the training data, where each internal node of the tree represents a decision based on a 

certain feature, and each leaf node represents a predicted value for the target variable. The 

algorithm splits the data at each node based on the feature that provides the most 

information gain, which is determined using a criterion such as mean squared error [46]. 

Once the decision tree is constructed, predictions for new data points are made by 

traversing down the tree based on the values of the features until a leaf node is reached, 

and the predicted value at that node is returned as the prediction for the new data point. 

CART can be useful for identifying nonlinear relationships between the features and 

target variables, as it can capture complex interactions between features. However, it can 



 

51 

be prone to overfitting, especially if the tree is allowed to grow too deep. Regularization 

techniques such as pruning or limiting the tree's depth can help mitigate this issue. 

Support Vector Regression   

Support Vector Regression (SVR) is a powerful machine learning algorithm that is used 

for regression tasks. SVR is a popular choice for machine learning tasks because it can 

handle high-dimensional data and can be used to model complex relationships between 

variables. SVR is a type of support vector machine (SVM) algorithm that can be used to 

solve linear and nonlinear problems. In contrast to linear regression, which aims to find a 

hyperplane that fits the data as well as possible, SVR tries to find a nonlinear function 

that can best fit the data while minimizing the error. The goal of SVR is to maximize the 

margin between the predicted values and the actual values. This algorithm uses a kernel 

function to map the input data into a high-dimensional feature space where finding a linear 

boundary can best separate the data points is possible. A kernel allows finding a 

hyperplane in a higher dimension space without increasing the computational cost. 

Ensemble Methods 

Ensemble Methods are machine learning techniques that combine multiple models to 

improve the overall performance and reduce the risk of overfitting. Ensemble methods 

are effective in a wide range of applications, including classification, regression, and 

clustering. Typically, ensemble methods are divided into two main categories: 

• Averaging methods: such as Bagging and Random Forest, involve building 

multiple independent models and averaging their predictions. This technique 

reduces variance and results in a more stable and accurate model. 

• Boosting methods: such as AdaBoost and Gradient Boosting, involve building 

models sequentially, where each subsequent model is built to correct the errors of 

the previous one. This technique reduces bias and results in a more robust and 

accurate model. 

Forest of Randomized Trees 

Two algorithms in the scikit-learn-ensemble module that use randomized decision trees 

are the Random Forest (RF) and Extra-Trees (ET) algorithms [42]. Both algorithms use 

perturb-and-combine techniques that are specifically designed for trees. This means a 

diverse set of regressors is created by introducing randomness in the regressor 

construction. The prediction of the ensemble is given as the averaged prediction of the 

individual regressors [46]. 

In RF, many decision trees are grown independently, each using a random subset of 

the training data and a random subset of the features. To make a prediction, the test data 

is run through each of the decision trees in the forest, and the final prediction is obtained 

by aggregating the individual predictions of all the trees. The most common way of 

aggregating the predictions is to take the average for regression problems of all the trees. 

Random Forest has several advantages over single decision trees, including better 

accuracy, robustness against overfitting, and the ability to handle high-dimensional data 
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with complex interactions between variables. It has been used in a variety of applications, 

including finance, healthcare, and remote sensing, among others. 

ET is particularly useful for high-dimensional datasets, where the number of features 

is much larger than the number of samples. In extra randomized trees, the splitting points 

of the nodes are chosen randomly instead of being chosen based on the best split. This 

randomness leads to a reduction in the variance of the model, making it less sensitive to 

the noise in the data. The algorithm also uses a bagging technique, where each tree is 

trained on a randomly selected subset of the training data. The final prediction is made by 

averaging the predictions of all the trees in the forest. 

Gradient Boosting Regression  

Gradient Boosting regression (GBM) is a machine learning algorithm that sequentially 

builds an ensemble of decision trees. In this approach, each decision tree is built to correct 

the errors made by the previous one, thus minimizing the overall error. The algorithm 

starts with a single decision tree, and the subsequent trees are trained on the previous 

tree's residuals (the difference between the predicted and actual values). The final 

prediction is made by combining the predictions of all the trees in the ensemble. 

GBM has become a popular algorithm for regression tasks due to its high accuracy 

and flexibility. It can handle various data types, including continuous and categorical 

variables, and perform feature selection and handle missing data. Additionally, it has 

built-in regularization techniques to prevent overfitting. However, it can be sensitive to 

hyperparameters, and tuning these parameters can be time-consuming. 

AdaBoost (AB) is a boosting technique used for classification and regression 

problems. It is an iterative algorithm that focuses more on samples that the model 

previously misclassified. In AB, base estimators are built sequentially, and each 

subsequent estimator tries to correct the errors made by the previous one. The final 

prediction is made by taking a weighted average of the predictions from all the individual 

base estimators. The effectiveness of AB relies heavily on the choice of the base estimator 

and the learning rate. The learning rate determines how much each estimator contributes 

to the final prediction; a lower learning rate can lead to better results but with a larger 

number of estimators needed.  

Stacking 

Stacking is an ensemble learning technique combining multiple models to improve 

predictive performance. It involves training several base models and using their 

predictions as input features for a final model, often called a meta-model [42]. The 

stacking process involves several steps: 

• Splitting the data: The dataset is divided into training and testing sets. 

• Building base models: Several base models are trained on the training set. 

• Generating predictions: The trained base models are used to make predictions on 

the test set. 

• Building a meta-model: The predictions from the base models are used as input 

features for a meta-model, which is trained on the training set. 

• Making final predictions: The meta-model is used to make final predictions on the 

test set. 
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One advantage of stacking over other ensemble methods is its flexibility in combining 

different types of models. So, linear and nonlinear models can be combined in a stacking 

ensemble to leverage the strengths of both models. 

Results and discussion 

This section provides a detailed comparison of ten different MLMs that serve as baseline 

models. The baseline models are categorized into two types: simple models and ensemble 

models. The discussion begins with the results of the simple models, followed by the 

findings of the ensemble methods. Lastly, the results of the stacking technique are 

presented. 

The Root Mean Squared Error (RMSE) is used for evaluating the performance of the 

regression models. It measures the difference between the predicted and actual values to 

estimate how much the predictions of the model deviate from the true values on average 

and is defined as   

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(�̃�𝑖 − 𝑥𝑖)2, (3) 

where n is the total number of test data, and �̃�𝑖 and 𝑥𝑖 are the predicted bending capacity 

coefficient and the test value, respectively. In the context of moment capacity prediction, 

a lower RMSE indicates that the model is more accurate in predicting the bending 

capacity of CFS channels. 

Simple models 

The performance of six MLMs using the RMSE and relative errors, as presented in Table 

2 and Table 3,  revealed distinct patterns in their predictive performance. Based on random 

splitting results, KNN and SVR emerged as the best performers among the models. KNN 

achieved the lowest test RMSE of 0.0992 and the lowest average relative error of 2.0895, 

with a maximum relative error of 23.3500, making it the most reliable model in terms of 

both consistency and accuracy. SVR also performed strongly, with a test RMSE of 0.0793, 

the second-lowest among all models, an average relative error of 6.5373, and a maximum 

relative error of 72.1928, balancing generalizability and predictive accuracy. In contrast, 

Lasso and EN were the worst performers. Lasso exhibited a test RMSE of 0.2571, a 

maximum relative error of 272.4345, and an average relative error of 20.0468, while EN 

had a test RMSE of 0.2469 and a maximum relative error of 234.8743 and an average 

relative error of 17.9576, indicating their inefficacy for this dataset. LR demonstrated 

moderate performance with a test RMSE of 0.1420 but high relative errors, with a 

maximum relative error of 207.5478 and an average relative error of 14.7019, suggesting 

significant inaccuracies in some predictions. DTR displayed a notable degree of 

overfitting, with a very low train RMSE of 0.0213 but a significantly higher test RMSE 

of 0.2086. Despite this overfitting, DTR maintained low relative errors, with a maximum 
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of 8.5694 and an average of 0.8040, suggesting good performance on certain samples but 

a lack of generalizability. 

Stratified shuffle split is a variation of the stratified cross validation technique, where 

the dataset is randomly shuffled before it is split into train and test sets. This technique 

ensures that the class proportions are maintained in both the training and testing sets. The 

results of the comparison between the same MLMs using stratified shuffle split show that 

the performance of some models could be improved. In contrast, others have deteriorated 

compared to the previous random split results. In this phase, the performance of KNN 

remained strong with a test RMSE of 0.1466 and an improved average relative error of 

1.6521, albeit with a slight increase in RMSE compared to random splitting. DTR 

demonstrated notable improvement with a test RMSE of 0.1401 and a significantly lower 

average relative error of 1.6364, indicating better generalizability and accuracy than in 

the random split evaluation. LR showed a considerable increase in test RMSE from 

0.1420 in the random split to 1.2836 in the stratified sampling, reflecting worse 

performance and poor generalization. Lasso and EN also performed poorly, with test 

RMSEs of 0.2629 and 0.2385 and high average relative errors of 8.5706 and 7.1050, 

respectively, underscoring their inefficacy for this dataset in both evaluations. SVR 

maintained competitive performance with a test RMSE of 0.1534 and an average relative 

error of 5.3519, showing consistent accuracy. Thus, the stratified shuffle split technique 

could improve the performance of some MLMs and help address class imbalance issues. 

However, the results may vary depending on the dataset's specific characteristics and the 

modeling approach. 

The boxplot of RMSE values, shown in Figure 5, can provide a useful visual summary 

of the performance of different MLMs, helping to identify patterns and outliers within the 

data. Comparing the boxplots of RMSE values for different models, the models with the 

lowest median and the minor variability could be identified, indicating better overall 

performance. 

Table 2: RMSE of train and test set of the simple models: 

Model 

RMSE 

Random split Stratified shuffle split 

Train Test Train Test 

LR 0.1871 0.1420 0.1323 0.1915 

LASSO 0.2999 0.2571 0.2381 0.2808 

EN 0.2873 0.2469 0.2294 0.2735 

KNN 0.1349 0.0992 0.0897 0.1745 

DTR 0.0213 0.2086 0.0347 0.1320 

SVR 0.1252 0.0793 0.0762 0.1646 
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Table 3: Relative errors for the simple models 

Model 

Random split Stratified shuffle split 

Max relative 

error 

Avg relative 

error 

Max relative 

error 

Avg relative 

error 

LR 207.5478 14.7019 33.8230 8.7587 

LASSO 272.4345 20.0468 40.6717 8.5706 

EN 234.8743 17.9576 28.4777 7.1050 

KNN 30.2741 2.0895 23.3500 1.6521 

DTR 8.5694 0.8040 20.6480 1.6364 

SVR 72.1928 6.5373 32.2793 5.3519 

 

 

Figure 5: Boxplot of RMSE values for the simple models 

Ensemble models 

The ensemble models evaluated using stratified shuffle splitting demonstrated notable 

performance differences, as listed in Table 4. Among the ensemble models, GBM 

achieved the lowest Train RMSE of 0.0101, indicating high accuracy on the training set, 

but its Test RMSE increased to 0.1348, suggesting some degree of overfitting. Despite 

this, GBM maintained a relatively low Test Avg. Relative Error of 1.5376, highlighting 

its potential for better generalization. Similarly, ET, while perfectly fitting the training 

data with a Train RMSE of 0.0000, showed a Test RMSE of 0.1365. ET's Test Avg. 
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Relative Error was 1.6123, slightly higher than that of GBM, but it was still indicative of 

controlled errors on the test set. 

In contrast, the RF model performed the worst among the evaluated models. RF had 

a Train RMSE of 0.0331 and a higher Test RMSE of 0.1396, indicating significant 

overfitting. Additionally, RF's Test Avg. Relative Error of 1.6984 was the highest among 

the models, suggesting less reliable performance on the test data. These results emphasize 

the superior balance in test set performance of GBM and ET compared to RF, 

underscoring the need for further model tuning and regularization to enhance robustness 

and generalization. 

Table 4: Performance metrics for ensemble models using stratified shuffle splitting 

Model RMSE Relative Errors 

Train Test Max. Relative Error Avg. Relative Error 

AB 0.0465 0.1231 22.0745 2.9650 

GBM 0.0101 0.1348 21.1912 1.5376 

RF 0.0331 0.1396 22.9964 1.6984 

ET 0 0.1365 20.6480 1.6123 

Stacking 

In machine learning, ensemble methods are a common approach to improving the 

predictive performance of models. In this context, the stacking of the dataset using six 

different base models was applied, performing more accurately than baseline models. 

From the previous findings, the stacking included LR, KNN, DTR, RF, and GBM. In 

addition, a multilayer perceptron (MLP) was added to enhance the stacking process. RF 

is then used as a higher model to make the final prediction. It should be mentioned that 

the stacking model was created using a combination of both linear and nonlinear models. 

The nonlinear models (MLP, RF, and GBM) contributed more to the improved 

performance than the linear models (LR and KNN). 

In addressing the trade-off between simplicity and accuracy for the studied models, it 

is crucial to consider both the complexity of the model and its predictive performance. 

Simpler models, such as LR and KNN, offer transparency and ease of interpretation but 

may lack the capacity to capture intricate patterns in the data. In contrast, ensemble and 

stacking models, like RF, GBM, and MLP, are inherently more complex but can achieve 

higher accuracy by combining the strengths of multiple base learners. One effective 

strategy is to use model interpretation techniques to balance transparency and accuracy. 

For instance, feature importance metrics can be derived from ensemble models to 

understand the contribution of each feature to the predictions. Additionally, partial 

dependence plots can illustrate the relationship between key features and the target 

variable, providing insights into the model's behavior. 

The results of the stacking approach show that it was able to improve the predictive 

performance of the individual base models. In Table 5, the RMSE of the stacked model is 

0.057, much lower than any of the individual base models, including the RF model, which 
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had the lowest RMSE on the test set (0.080). This suggests combining different models 

has led to a more accurate overall prediction. Among the individual base models, the RF 

model had the lowest RMSE on both the training and test sets, indicating its effectiveness 

in predicting the target variable. The MLP and GBM models also performed well, with 

low RMSE on the test set. However, the LR and KNN models had comparatively higher 

RMSE on the test set, indicating their limitations in accurately predicting the target 

variable. 

Table 5: RMSE of train and test set of the stacking process 

Model RMSE 

Random Split Stratified Shuffle Split 

Train Test Train Test 

LR 0.184 0.142 0.176 0.155 

MLP 0.162 0.117 0.153 0.126 

KNN 0.164 0.120 0.134 0.133 

DTR 0 0.132 0.0001 0.036 

RF 0.062 0.080 0.056 0.053 

GBM 0.089 0.093 0.040 0.067 

Stacked 0.115 0.057 0.079 0.036 

 

Interestingly, the DTR model achieved zero RMSE on the training set but did not 

contribute much to the stacked model's performance. This may be because the decision 

tree model overfitted the training data and did not generalize well to the test data. 

The results of stratified splitting show that the stacking ensemble model outperformed 

all the individual models on the test set with an RMSE of 0.036, the lowest error among 

all the models. The individual models also performed well on the test set, with the MLP 

and random forest models having the lowest RMSE of 0.126 and 0.053, respectively. The 

DTR model achieved the lowest RMSE on the training set, which could indicate 

overfitting, as it had a high RMSE on the test set. 

It's worth noting that the stacked model's performance on the training set was not as 

good as some of the individual models, such as the MLP and random forest models. This 

suggests that the stacked model combined the strengths of the individual models to 

generalize well to the test set rather than simply memorizing the training data. Overall, 

the stacking approach using the selected base models improved the models' predictive 

performance, with the stacked model achieving the lowest RMSE on the test set. This 

highlights the effectiveness of ensemble methods in improving the accuracy of 

predictions, mainly when using a combination of both linear and nonlinear models. 
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Comparison of FEA and machine learning prediction to DSM 

Wang et al. [13] investigated the structural behavior and evaluated the appropriateness of 

the current direct strength method on the design of CFS stiffened cross sections subjected 

to bending. The nominal moment capacities (MDSM) of CFS stiffened sections were 

calculated using the modified direct strength formulae [13]. The flexural strength (MDSM) 

is the minimum of nominal flexural strength for local buckling (Mnl) and Flexural strength 

for distortional buckling (Mnd): 

𝑀DSM= min(𝑀nl, 𝑀nd). (4) 

The modified formulae for calculating the nominal flexural strength (Mnl) subjected 

to local buckling for sections symmetric about the axis of bending are as follows: 

𝑀nl = [1 + (ƞ − 1) (1 − 1
𝐶yl

2⁄ )]𝑀y             for 𝜆l ≤ 0.880, and               (5) 

𝑀nl = [1 − 0.06 (
𝑀crl

𝑀y
)

0.26

] (
𝑀crl

𝑀y
⁄ )

0.26

𝑀y                 for 𝜆l > 0.880, (6) 

where 𝐶yl = √0.880
𝜆l

⁄ ≤ 3,  𝜆𝑙 = √𝑀y 𝑀crl⁄ , ƞ is the shape factor depends on the shape 

of the cross section ( ƞ =  
𝑍𝑓

𝑆𝑓
⁄ ), 𝑍𝑓 is the plastic section modulus, and  𝑆𝑓  is the gross 

section modulus referenced to the extreme fiber at first yield. The 𝑓𝑦  is the yield stress, 

which is the 0.2% proof stress and 𝑀𝑐𝑟𝑙 is the critical elastic local buckling moment. 

The modified formulae for calculating the nominal flexural strength (Mnd) subjected 

to distortional buckling for sections symmetric about the axis of bending are as follows: 

 𝑀𝑛𝑑 = [1 + (ƞ − 1) (1 − 1
𝐶𝑦𝑑

2⁄ )]𝑀𝑦                 for 𝜆l ≤ 0.857, and (7) 

  𝑀nd = [1 − 0.13 (
𝑀crd

𝑀y
)

0.54

] (
𝑀crl

𝑀y
⁄ )

0.54

𝑀y         for 𝜆l > 0.857, (8) 

where 𝐶yd = √0.857
𝜆d

⁄ ≤ 3,  𝜆𝑙 = √𝑀y 𝑀crd⁄ , and 𝑀crd is the critical distortional 

buckling moment. 

The comparison of FEM and the nominal values predicted by machine learning and 

the modified DSM is shown in Table 6. Different geometric ranges of CFS sections have 

been included in the comparison within the geometric limits of AISI [14] and EC3 [47].  
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Table 6: Comparison of the FEA results and machine learning predictions with DSM 

Section 

(web 

height-

flange 

width) 

thickness 

(mm) 

Stiffener 

Dim. 

FEM 

(kNmm) 

Failure 

mode 

DSM* 

(kNmm) 

Stacking 

prediction 

MLM 

(kNmm) 

comparison 

w 

(mm) 

θ DSM

FEM
 

MLM

FEM
 

120-30 3.6 33.94 45 14706 F 13888 15627 0.94 1.06 

120-30 1.9 33.8 45 6690 L+F 6683 6567 1.00 0.98 

150-52 2.4 41.58 45 14785 L+F 14156 14008 0.96 0.95 

150-52 2.4 41.58 30 14633 L+F 14037 15144 0.96 1.03 

150-52 2.4 21.21 45 13890 L+F 13915 14365 1.00 1.03 

82.5-52 1.9 23.4 45 4666 L+F 4691 5366 1.01 1.15 

82.5-52 1.9 12.66 45 4005 L+F 4631 5374 1.16 1.34 

120-52 1.9 17.68 45 7333 L+F 7386 6366 1.01 0.87 

120-30 1 33.94 45 2955 L+F 2583 2903 0.87 0.98 

120-30 1 16.97 45 2498 L+F 2533 2413 1.01 0.97 

82.5-52 1.5 35 45 3087 L+F 3363 3988 1.09 1.29 

82.5-52 1.5 22.27 45 3413 L+F 3317 3560 0.97 1.04 

82.5-52 1.5 35 30 3335 L+F 3294 4228 0.99 1.27 

150-52 1.5 42.43 45 8627 L+F 7039 8723 0.82 1.01 

82.5-52 1.5 11.66 45 2893 L+F 3265 3607 1.13 1.25 

150-52 1.5 42.43 30 8254 L+F 6995 8163 0.85 0.99 

150-52 1.5 21.21 45 6724 L+F 6925 6728 1.03 1.00 

82.5-52 1 34.29 45 2026 L+F 1857 2063 0.92 1.02 

82.5-52 1 34.29 30 1859 L+F 1819 2034 0.98 1.09 

150-52 1 42.43 30 4534 L+F 3821 4180 0.84 0.92 

120-52 1 16.97 45 2749 L+F 2842 2462 1.03 0.90 

120-52 0.6 33.49 45 1447 L+F 1342 1710 0.93 1.18 

120-52 1 33.94 45 3168 L+F 2886 2618 0.91 0.83 

82.5-52 1 11.67 45 1969 L+F 1792 1968 0.91 1.00 

150-52 1 42.43 45 4433 L+F 3838 4248 0.87 0.96 

Average        0.97 1.04 

Standard deviation      0.09 0.13 

* Modified direct strength method   

L=local buckling; D=distortional buckling; and F=global flexural buckling 
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The results show that machine learning was able to predict reasonable predictions for 

the selected CFS sections. However, it sometimes tends selectively to overestimate the 

bending capacity of thick lower height profiles, with maximum predictions reaching 

values of 29 % and 34 % in some cases, compared to the FEM predictions. The average 

ratio of the bending capacities predicted using MLM to the determined FEM values was 

1.04, with a standard deviation of 0.13. So, machine learning could be considered, to a 

large extent, a reliable approach for predicting CFS sections' bending capacity 

incorporating complex stiffeners. 

Conclusions 

This study employed machine learning algorithms to create a unified capacity prediction 

method for stiffened and unstiffened CFS beams under pure bending. Verified finite 

element results have been used to feed the MLMs. The performance of the classical 

algorithms and ensemble techniques was then evaluated. A stacking technique was used 

with the selective algorithms to outperform the performance of individual models. The 

study suggests that the proposed numerical machine learning approaches could be reliable 

in predicting the structural behavior of CFS beams, as it predicted the complexities 

relevant to geometric parameters with acceptable accuracy. The following conclusions 

can be drawn: 

• The performance of six different simple MLMs based on random splitting results 

was assessed. The results show that the KNN and SVR models performed the best, 

with the lowest test RMSE values of 0.1037 and 0.0787, respectively. Both models 

can handle nonlinear data relationships, which are present in the dataset. 

Additionally, these models can handle complex and high-dimensional data, which 

also exist in this study. 

• A comparison was made among the performance of several MLMs using the 

stratified shuffle split technique and the previously used random split technique. 

The results indicated that the performance of some models was improved, while 

others deteriorated when stratified shuffle split was used. However, the KNN and 

DTR models still performed well. The results also showed that using a stratified 

shuffle split technique could improve the performance of some MLMs and help 

address class imbalance issues. 

• The study's findings indicated that the ensemble MLMs, including AB, GBM, RF, 

and ET, could provide improved predictive performance compared to simple 

MLMs evaluated earlier. The ET model, in particular, perfectly fit the training data 

but had a higher test RMSE value than the RF model, which had slightly higher 

training RMSE. This suggests that the Random Forest model may be better suited 

for generalizing to new data.  

• The applied stacking technique to the dataset used six base models to improve the 

approach performance. It combined both linear and nonlinear models. The 

nonlinear models (MLP, RF, and GBM) contributed more to the improved 

performance than the linear models (LR and KNN). In addition, the introduced 

MLP further enhanced the stacking technique. The results indicated that the 
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stacking approach significantly improved the performance of individual MLMs. 

The stacked model achieved an RMSE of 0.036, lower than any individual model. 

This suggests that the stacked model can capture the underlying patterns in the 

data, making more accurate predictions. 

• Generally, the introduced machine learning approach tends to overestimate the 

ultimate capacity prediction of the thick lower height profiles of CFS beam 

sections. Conversely, the DSM slightly underestimates the capacity prediction of 

sections since it includes reduction factors for design purposes. The average ratio 

of the bending capacities predicted using ML to the FEM values was 1.04, with a 

standard deviation of 0.13. Such results point to the potential of ML as a reliable 

and cost-effective design approach for CFS sections. 
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